热门搜索 :
考研考公
您的当前位置:首页正文

SQL优化技巧(Oracle)

2023-11-09 来源:东饰资讯网

where hsje>5000and dzxl = ‘000001’and 25<(select count(*) from report_sale_accountwhere code=e.code);高效:select * from report_sale_account ewhere 25<(select count (*)    from report_sale_account     where code=e.code)and hsje>5000and dzxl = ‘000001’;SQL的优化技巧 (2)删除全表时,用truncate 替代 delete,同时注意truncate只能在删除全表时适用,因为truncate是ddl而不是dml。例如删除掉一个100万行的数据。Truncate table report_sale_account;  比delete from report_sale_account;至少快1000倍。SQL的优化技巧 (3)尽量多使用commit:只要有可能就在程序中对每个delete、insert、update操作尽量多使用commit,这样系统性能会因为commit所释放的资源而大大提高。SQL的优化技巧 (4)用exists替代in ,可以提高查询的效率。低效SELECT * FROM REPORT_SALE_ACCOUNT     WHERE COM_CODE      NOT IN (SELECT CODE                       FROM BASEINFO_GOODS                     WHERE DZXL = ‘000001’)  高效SELECT * FROM REPORT_SALE_ACCOUNT    WHERE NOT EXISTS     (SELECT CODE FROM  BASEINFO_GOODS         WHERE CODE =  REPORT_SALE_ACCOUNT.COM_CODE                 AND DZXL = ‘000001‘)SQL的优化技巧 (5)优化group by提高group by语句的效率,可以将不需要的记录在group by之前过滤掉。SQL的优化技巧 (5)例如:低效:select dzxl,        avg(hsje)             from report_sale_account           group by dzxl           having dzxl = ‘000001’                        or dzxl =’000002’;高效: select dzxl,                       avg(hsje)              from report_sale_account            where dzxl = ‘000001’                       or dzxl =’000002’            group by dzxl;避免使用HAVING子句,HAVING只会在检索出所有记录之后才对结果集进行过滤,这个处理需要排序、统计等操作。如果能通过WHERE子句限制记录的数目,那就能减少这方面的开销。SQL的优化技巧 (6)有条件的使用union-all 替代 union:这样做效率会提高3到5倍。SQL的优化技巧 (7)在含有子查询的SQL语句中,要特别注意减少对表的查询例如:低效  SELECT SUM(HSJE)  FROM REPORT_SALE_ACCOUNT  WHERE DZXL = (SELECT DZXL                                FROM BASEINFO_GOODS                                WHERE CODE = ‘0001’)                AND PP =(SELECT PP                                  FROM BASEINFO_GOODS                                  WHERE CODE = ‘0001’)  高效  SELECT SUM(HSJE)  FROM REPORT_SALE_ACCOUNT   WHERE (DZXL, PP) = (SELECT DZXL,PP                                          FROM BASEINFO_GOODS                                          WHERE CODE = ‘0001’) Update多个Column同样适用于以上的例子。SQL的优化技巧 (8)SELECT子句中避免使用’*’  当你想在SELECT子句中列出所有的COLUMN时,使用动态SQL列引用‘*‘是一个方便的方法,不幸的是,这是一个非常低效的方法,实际上,ORACLE在解析的过程中,会将‘*‘依次转换成所有的列名,这个工作是通过查询数据字典完成的,这意味着将耗费更多的时间。一些函数的使用技巧虽然在SQL中盲目引用函数会使性能降低,但如果正确使用合适的函数不仅会使SQL可读性加强,并且能对SQL性能得到提高,使复杂的查询能很方便地实现低效的做法:Select name,score,‘优‘ 成绩等级  From score  Where score>=90UNION ALLSelect name,score,‘良‘ 成绩等级 From score Where score>=80 and score<90UNION ALLSelect name,score,‘中‘ 成绩等级 From score  Where score>=60 and score<80UNION ALLSelect name,score,‘差‘ 成绩等级 From score   Where score<60;高效的做法1_decode函数:Select name,       score,       decode(sign(score - 90),              -1,              decode(sign(score - 80),                     -1,                     decode(sign(score - 60), -1, ‘差‘, ‘中‘),                     ‘良‘),              ‘优‘) as 成绩等级  from score;高效做法2_case wehn:SELECT stuname,       score,       (CASE sign(score - 90)         WHEN -1 THEN          CASE sign(score - 80)         WHEN -1 THEN          CASE sign(score - 60)         WHEN -1 THEN          ‘差‘         ELSE          ‘中‘       END ELSE ‘良‘ END               ELSE ‘优‘ END) grade  FROM student;索引的引用(1)当插入的数据为数据表中的记录数量的10%以上,首先需要删除该表的索引来提高数据的插入效率,当数据插入后,再建立索引索引的引用(2)避免在索引列上使用函数或计算,在where子句中,如果索引是函数的一部分,优化器将不再使用索引而使用全表扫描。如: 低效:select *  from  report_sale_account           where hsjj*10 >1000;高效:select *  from report_sale_account where hsjj >1000/10; 索引的引用(3)尽量避免在索引列上使用not和 “!=”和“<>”,索引只能告诉什么存在于表中,而不能告诉什么不存在于表中,当数据库遇到not 和 “!=” 和“<>”时,就会停止使用索引而去执行全表扫描。 索引的引用(4)请务必注意,检索中不要对索引列进行处理,如:TRIM,TO_DATE,类型转换等操作,破坏索引,使用全表扫描,影响SQL执行效率 索引的引用(5)避免在索引列上使用IS NULL和IS NOT NULL避免在索引中使用任何可以为空的列,ORACLE将无法使用该索引对于单列索引,如果列包含空值,索引中将不存在此记录;对于复合索引,如果每个列都为空,索引中同样不存在此记录。如果至少有一个列不为空,则记录存在于索引中因为空值不存在于索引列中,所以WHERE子句中对索引列进行空值比较将使ORACLE停用该索引索引的引用(6)索引列上“>=”代替“>”低效:select * from report_sale_account where hsjj > 10;高效:select * from report_sale_account where hajj >=10.000000000000001; 比较大小函数 sign函数语法:sign(n)函数说明:取数字n的符号,大于0返回1,小于0返回-1,等于0返回0示例:一、select sign( 100 ),sign(- 100 ),sign( 0 ) from dual;  SIGN(100) SIGN(-100) SIGN(0)  ———- ———- ———-  1 -1 0二、a=10,b=20   则sign(a-b)返回-1SQL优化方法第一个方法:利用连接符连接多个字段。第二个方法:取消重复的行。第三个方法:勤用WHERE语句。第四个方法:灵活使用COUNT函数第五个方法:只查询时必须的字段。 第六个方法:合理处理NULL字段。 第七个方法:多多利用模糊查询。第八个方法:慎用Like等通配符。第九个方法:利用注释提高查询语句的可读性。第十个方法:必要的时候,限制用户所使用的行。 1. SELECT子句中避免使用 “*”     当你想在SELECT子句中列出所有的COLUMN时,使用动态SQL列引用‘*’是一个方便的方法。不幸的是,这是一个非常低效的方法。 实际上,ORACLE在解析的过程中, 会将“*” 依次转换成所有的列名, 这个工作是通过查询数据字典完成的, 这意味着将耗费更多的时间。2.使用DECODE函数来减少处理时间     使用DECODE函数可以避免重复扫描相同记录或重复连接相同的表. 例如: Sql代码 SELECT COUNT(*),SUM(SAL) FROM EMP WHERE DEPT_NO = 0020 AND  ENAME LIKE ‘SMITH%’;   SELECT COUNT(*),SUM(SAL) FROM EMP WHERE DEPT_NO = 0030 AND ENAME LIKE ‘SMITH%’;      你可以用DECODE函数高效地得到相同结果: Sql代码 SELECT COUNT(DECODE(DEPT_NO,0020,’X’,NULL)) D0020_COUNT,           COUNT(DECODE(DEPT_NO,0030,’X’,NULL)) D0030_COUNT,           SUM(DECODE(DEPT_NO,0020,SAL,NULL)) D0020_SAL,           SUM(DECODE(DEPT_NO,0030,SAL,NULL)) D0030_SAL   FROM EMP WHERE ENAME LIKE ‘SMITH%’;      类似的,DECODE函数也可以运用于GROUP BY 和ORDER BY子句中。decode含义解释:decode(条件,值1,翻译值1,值2,翻译值2,...值n,翻译值n,缺省值)3.删除重复记录    最高效的删除重复记录方法 ( 因为使用了ROWID) Sql代码 DELETE FROM EMP E WHERE E.ROWID > (SELECT MIN(X.ROWID) FROM EMP X WHERE X.EMP_NO = E.EMP_NO);  4. 用TRUNCATE替代DELETE     当删除表中的记录时,在通常情况下,回滚段(rollback segments ) 用来存放可以被恢复的信息,如果你没有COMMIT事务,ORACLE会将数据恢复到删除之前的状态(准确地说是恢复到执行删除命令之前的状况),而当运用TRUNCATE时, 回滚段不再存放任何可被恢复的信息.当命令运行后,数据不能被恢复.因此很少的资源被调用,执行时间也会很短. 5.计算记录条数     和一般的观点相反, count(*) 比count(1)稍快 ,当然如果可以通过索引检索,对索引列的计数仍旧是最快的. 例如 COUNT(EMPNO) 6.用Where子句替换HAVING子句     避免使用HAVING子句,HAVING 只会在检索出所有记录之后才对结果集进行过滤,这个处理需要排序、总计等操作,如果能通过WHERE子句限制记录的数目,那就能减少这方面的开销, 例如: Sql代码 --低效   SELECT REGION,AVG(LOG_SIZE) FROM LOCATION GROUP BY REGION HAVING REGION != ‘SYDNEY’ AND REGION != ‘PERTH’   --高效   SELECT REGION,AVG(LOG_SIZE)  FROM  LOCATION WHERE REGION != ‘SYDNEY’ AND REGION != ‘PERTH’ GROUP BY REGION  7. 用EXISTS替代IN    在许多基于基础表的查询中,为了满足一个条件,往往需要对另一个表进行联接.在这种情况下, 使用EXISTS(或NOT EXISTS)通常将提高查询的效率. Sql代码 --低效   SELECT * FROM EMP WHERE EMPNO > 0 AND DEPTNO IN (SELECT DEPTNO FROM DEPT WHERE LOC = ‘MELB’)   --高效:   SELECT * FROM EMP WHERE EMPNO > 0 AND EXISTS (SELECT ‘X’  FROM DEPT WHERE DEPT.DEPTNO = EMP.DEPTNO AND LOC = ‘MELB’)  8.用NOT EXISTS替代NOT IN    在子查询中,NOT IN子句将执行一个内部的排序和合并. 无论在哪种情况下,NOT IN都是最低效的 (因为它对子查询中的表执行了一个全表遍历).  为了避免使用NOT IN,我们可以把它改写成外连接(Outer Joins)或NOT EXISTS. 例如: SELECT …FROM EMP  WHERE DEPT_NO NOT IN (SELECT DEPT_NO FROM DEPT WHERE DEPT_CAT=’A’); Sql代码 --为了提高效率改写为: (方法一: 高效)   SELECT ….FROM EMP A,DEPT B WHERE A.DEPT_NO = B.DEPT(+) AND B.DEPT_NO IS NULL AND B.DEPT_CAT(+) = ‘A’   -- (方法二: 最高效)   SELECT ….FROM EMP E WHERE NOT EXISTS (SELECT ‘X’  FROM DEPT D WHERE D.DEPT_NO = E.DEPT_NO AND DEPT_CAT = ‘A’);  9.用EXISTS替换DISTINCT     当提交一个包含一对多表信息(比如部门表和雇员表)的查询时,避免在SELECT子句中使用DISTINCT. 一般可以考虑用EXIST替换 例如: Sql代码 --低效:    SELECT DISTINCT DEPT_NO,DEPT_NAME  FROM DEPT D,EMP E WHERE D.DEPT_NO = E.DEPT_NO   --高效:   SELECT DEPT_NO,DEPT_NAME  FROM DEPT D WHERE EXISTS ( SELECT ‘X’ FROM EMP E WHERE E.DEPT_NO = D.DEPT_NO);   --EXISTS 使查询更为迅速,因为RDBMS核心模块将在子查询的条件一旦满足后,立刻返回结果.  10. 用索引提高效率    索引是表的一个概念部分,用来提高检索数据的效率,实际上ORACLE使用了一个复杂的自平衡B-tree结构,通常通过索引查询数据比全表扫描要快,当ORACLE找出执行查询和Update语句的最佳路径时, ORACLE优化器将使用索引, 同样在联结多个表时使用索引也可以提高效率,另一个使用索引的好处是,它提供了主键(primary key)的唯一性验证,除了那些LONG或LONG RAW数据类型, 你可以索引几乎所有的列. 通常, 在大型表中使用索引特别有效. 当然,你也会发现, 在扫描小表时,使用索引同样能提高效率,虽然使用索引能得到查询效率的提高,但是我们也必须注意到它的代价. 索引需要空间来存储,也需要定期维护,每当有记录在表中增减或索引列被修改时,索引本身也会被修改,这意味着每条记录的INSERT , DELETE , UPDATE将为此多付出4 , 5 次的磁盘I/O, 因为索引需要额外的存储空间和处理,那些不必要的索引反而会使查询反应时间变慢。注:定期的重构索引是有必要的. 11. 避免在索引列上使用计算       WHERE子句中,如果索引列是函数的一部分,优化器将不使用索引而使用全表扫描. 举例: Sql代码 --低效:   SELECT …FROM DEPT WHERE SAL * 12 > 25000;   --高效:   SELECT … FROM DEPT WHERE SAL  > 25000/12;  12. 用>=替代> Sql代码 --如果DEPTNO上有一个索引   --高效:      SELECT *  FROM EMP  WHERE DEPTNO >=4      --低效:      SELECT *  FROM EMP   WHERE DEPTNO >3  

   两者的区别在于, 前者DBMS将直接跳到第一个DEPT等于4的记录而后者将首先定位到DEPTNO=3的记录并且向前扫描到第一个DEPT大于3的记录. 

说明:本人于ITEYE创建于2013年,现转移到CSDN

SQL优化技巧(Oracle)

标签:

小编还为您整理了以下内容,可能对您也有帮助:

如何对Oracle sql 进行性能优化的调整

在SQL查询中,为了提高查询的效率,我们常常采取一些措施对查询语句进行SQL性能优化。本文我们总结了一些优化措施,接下来我们就一一介绍。

1.查询的模糊匹配

尽量避免在一个复杂查询里面使用 LIKE '%parm1%'—— 红色标识位置的百分号会导致相关列的索引无法使用,最好不要用。

解决办法:

其实只需要对该脚本略做改进,查询速度便会提高近百倍。改进方法如下:

a、修改前台程序——把查询条件的供应商名称一栏由原来的文本输入改为下拉列表,用户模糊输入供应商名称时,直接在前台就帮忙定位到具体的供应商,这样在调用后台程序时,这列就可以直接用等于来关联了。

b、直接修改后台——根据输入条件,先查出符合条件的供应商,并把相关记录保存在一个临时表里头,然后再用临时表去做复杂关联。

2.索引问题

在做性能跟踪分析过程中,经常发现有不少后台程序的性能问题是因为缺少合适索引造成的,有些表甚至一个索引都没有。这种情况往往都是因为在设计表时,没去定义索引,而开发初期,由于表记录很少,索引创建与否,可能对性能没啥影响,开发人员因此也未多加重视。然一旦程序发布到生产环境,随着时间的推移,表记录越来越多。这时缺少索引,对性能的影响便会越来越大了。

法则:不要在建立的索引的数据列上进行下列操作:

避免对索引字段进行计算操作

避免在索引字段上使用not,>,!=

避免在索引列上使用IS NULL和IS NOT NULL

避免在索引列上出现数据类型转换

避免在索引字段上使用函数

避免建立索引的列中使用空值

3.复杂操作

部分UPDATE、SELECT 语句 写得很复杂(经常嵌套多级子查询)——可以考虑适当拆成几步,先生成一些临时数据表,再进行关联操作。

4.update

同一个表的修改在一个过程里出现好几十次,如:

update table1 set col1=... where col2=...; update table1 set col1=... where col2=... ...

这类脚本其实可以很简单就整合在一个UPDATE语句来完成(前些时候在协助xxx项目做性能问题分析时就发现存在这种情况)

5.在可以使用UNION ALL的语句里,使用了UNION

UNION 因为会将各查询子集的记录做比较,故比起UNION ALL ,通常速度都会慢上许多。一般来说,如果使用UNION ALL能满足要求的话,务必使用UNION ALL。还有一种情况大家可能会忽略掉,就是虽然要求几个子集的并集需要过滤掉重复记录,但由于脚本的特殊性,不可能存在重复记录,这时便应该使用 UNION ALL,如xx模块的某个查询程序就曾经存在这种情况,见,由于语句的特殊性,在这个脚本中几个子集的记录绝对不可能重复,故可以改用UNION ALL)。

6.在WHERE 语句中,尽量避免对索引字段进行计算操作

这个常识相信绝大部分开发人员都应该知道,但仍有不少人这么使用,我想其中一个最主要的原因可能是为了编写写简单而损害了性能,那就不可取了。9月份在对XX系统做性能分析时发现,有大量的后台程序存在类似用法,如:where trunc(create_date)=trunc(:date1),虽然已对create_date 字段建了索引,但由于加了TRUNC,使得索引无法用上。此处正确的写法应该是where create_date>=trunc(:date1) and create_date pre="">>或者是where create_date between trunc(:date1) and trunc(:date1)+1-1/(24*60*60)。

注意:因between 的范围是个闭区间(greater than or equal to low value and less than or equal to high value.),故严格意义上应该再减去一个趋于0的小数,这里暂且设置成减去1秒(1/(24*60*60)),如果不要求这么精确的话,可以略掉这步。

ORACLE SQL语句优化技术分析

为了让更多的新手受益,我抽空把SQL语句优化部分进行了整理,希望大家一起进步。

一、操作符优化

1、IN 操作符

用IN写出来的SQL的优点是比较容易写及清晰易懂,这比较适合现代软件开发的风格。但是用IN的SQL性能总是比较低的,从Oracle执行的步骤来分析用IN的SQL与不用IN的SQL有以下区别:

ORACLE试图将其转换成多个表的连接,如果转换不成功则先执行IN里面的子查询,再查询外层的表记录,如果转换成功则直接采用多个表的连接方式查询。由此可见用IN的SQL至少多了一个转换的过程。一般的SQL都可以转换成功,但对于含有分组统计等方面的SQL就不能转换了。

推荐方案:在业务密集的SQL当中尽量不采用IN操作符,用EXISTS 方案代替。

2、NOT IN操作符

此操作是强列不推荐使用的,因为它不能应用表的索引。

推荐方案:用NOT EXISTS 方案代替

3、IS NULL 或IS NOT NULL操作(判断字段是否为空)

判断字段是否为空一般是不会应用索引的,因为索引是不索引空值的。

推荐方案:用其它相同功能的操作运算代替,如:a is not null 改为 a0 或a’’等。不允许字段为空,而用一个缺省值代替空值,如申请中状态字段不允许为空,缺省为申请。

4、 及 操作符(大于或小于操作符)

大于或小于操作符一般情况下是不用调整的,因为它有索引就会采用索引查找,但有的情况下可以对它进行优化,如一个表有100万记录,一个数值型字段A,30万记录的A=0,30万记录的A=1,39万记录的A=2,1万记录的A=3。那么执行A2与A=3的效果就有很大的区别了,因为A2时ORACLE会先找出为2的记录索引再进行比较,而A=3时ORACLE则直接找到=3的记录索引。

5、LIKE操作符

LIKE操作符可以应用通配符查询,里面的通配符组合可能达到几乎是任意的查询,但是如果用得不好则会产生性能上的问题,如LIKE ‘%5400%’ 这种查询不会引用索引,而LIKE ‘X5400%’则会引用范围索引。

一个实际例子:用YW_YHJBQK表中营业编号后面的户标识号可来查询营业编号 YY_BH LIKE ‘%5400%’ 这个条件会产生全表扫描,如果改成YY_BH LIKE ’X5400%’ OR YY_BH LIKE ’B5400%’ 则会利用YY_BH的索引进行两个范围的查询,性能肯定大大提高。

6、UNION操作符

UNION在进行表链接后会筛选掉重复的记录,所以在表链接后会对所产生的结果集进行排序运算,删除重复的记录再返回结果。实际大部分应用中是不会产生重复的记录,最常见的是过程表与历史表UNION。如: select * from gc_dfys union select * from ls_jg_dfys 这个SQL在运行时先取出两个表的结果,再用排序空间进行排序删除重复的记录,最后返回结果集,如果表数据量大的话可能会导致用磁盘进行排序。

推荐方案:采用UNION ALL操作符替代UNION,因为UNION ALL操作只是简单的将两个结果合并后就返回。

select * from gc_dfys union all select * from ls_jg_dfys

二、SQL书写的影响

1、同一功能同一性能不同写法SQL的影响。

如一个SQL在A程序员写的为  Select * from zl_yhjbqk

B程序员写的为 Select * from dlyx.zl_yhjbqk(带表所有者的前缀)

C程序员写的为 Select * from DLYX.ZLYHJBQK(大写表名)

D程序员写的为 Select *  from DLYX.ZLYHJBQK(中间多了空格)

以上四个SQL在ORACLE分析整理之后产生的结果及执行的时间是一样的,但是从ORACLE共享内存SGA的原理,可以得出ORACLE对每个SQL 都会对其进行一次分析,并且占用共享内存,如果将SQL的字符串及格式写得完全相同,则ORACLE只会分析一次,共享内存也只会留下一次的分析结果,这不仅可以减少分析SQL的时间,而且可以减少共享内存重复的信息,ORACLE也可以准确统计SQL的执行频率。

2、WHERE后面的条件顺序影响

WHERE子句后面的条件顺序对大数据量表的查询会产生直接的影响。如: Select * from zl_yhjbqk where dy_dj = '1KV以下' and xh_bz=1 Select * from zl_yhjbqk where xh_bz=1 and dy_dj = '1KV以下' 以上两个SQL中dy_dj(电压等级)及xh_bz(销户标志)两个字段都没进行索引,所以执行的时候都是全表扫描,第一条SQL的dy_dj = '1KV以下'条件在记录集内比率为99%,而xh_bz=1的比率只为0.5%,在进行第一条SQL的时候99%条记录都进行dy_dj及xh_bz的比较,而在进行第二条SQL的时候0.5%条记录都进行dy_dj及xh_bz的比较,以此可以得出第二条SQL的CPU占用率明显比第一条低。

3、查询表顺序的影响

在FROM后面的表中的列表顺序会对SQL执行性能影响,在没有索引及ORACLE没有对表进行统计分析的情况下,ORACLE会按表出现的顺序进行链接,由此可见表的顺序不对时会产生十分耗服物器资源的数据交叉。(注:如果对表进行了统计分析,ORACLE会自动先进小表的链接,再进行大表的链接)

三、SQL语句索引的利用

1、操作符优化(同上)

2、对条件字段的一些优化

采用函数处理的字段不能利用索引,如:

substr(hbs_bh,1,4)=’5400’,优化处理:hbs_bh like ‘5400%’

trunc(sk_rq)=trunc(sysdate), 优化处理:sk_rq=trunc(sysdate) and sk_rqtrunc(sysdate+1)

进行了显式或隐式的运算的字段不能进行索引,如:ss_df+2050,优化处理:ss_df30

‘X’ || hbs_bh’X5400021452’,优化处理:hbs_bh’5400021542’

sk_rq+5=sysdate,优化处理:sk_rq=sysdate-5

hbs_bh=5401002554,优化处理:hbs_bh=’ 5401002554’,注:此条件对hbs_bh 进行隐式的to_number转换,因为hbs_bh字段是字符型。

条件内包括了多个本表的字段运算时不能进行索引,如:ys_dfcx_df,无法进行优化 qc_bh || kh_bh=’5400250000’,优化处理:qc_bh=’5400’ and kh_bh=’250000’

四、其他

ORACLE的提示功能是比较强的功能,也是比较复杂的应用,并且提示只是给ORACLE执行的一个建议,有时如果出于成本方面的考虑ORACLE也可能不会按提示进行。根据实践应用,一般不建议开发人员应用ORACLE提示,因为各个数据库及服务器性能情况不一样,很可能一个地方性能提升了,但另一个地方却下降了,ORACLE在SQL执行分析方面已经比较成熟,如果分析执行的路径不对首先应在数据库结构(主要是索引)、服务器当前性能(共享内存、磁盘文件碎片)、数据库对象(表、索引)统计信息是否正确这几方面分析。

怎样优化oracle数据库

1
调整数据结构的设计。这一部分在开发信息系统之前完成,程序员需要考虑是否使用ORACLE数据库的分区功能,对于经常访问的数据库表是否需要建立索引等。
2
调整应用程序结构设计。这一部分也是在开发信息系统之前完成,程序员在这一步需要考虑应用程序使用什么样的体系结构,是使用传统的Client/Server两层体系结构,还是使用Browser/Web/Database的三层体系结构。不同的应用程序体系结构要求的数据库资源是不同的。
3
调整数据库SQL语句。应用程序的执行最终将归结为数据库中的SQL语句执行,因此SQL语句的执行效率最终决定了ORACLE数据库的性能。ORACLE公司推荐使用ORACLE语句优化器(Oracle Optimizer)和行锁管理器(row-level manager)来调整优化SQL语句。
4
调整服务器内存分配。内存分配是在信息系统运行过程中优化配置的,数据库管理员可以根据数据库运行状况调整数据库系统全局区(SGA区)的数据缓冲区、日志缓冲区和共享池的大小;还可以调整程序全局区(PGA区)的大小。需要注意的是,SGA区不是越大越好,SGA区过大会占用操作系统使用的内存而引起虚拟内存的页面交换,这样反而会降低系统。
5
调整硬盘I/O,这一步是在信息系统开发之前完成的。数据库管理员可以将组成同一个表空间的数据文件放在不同的硬盘上,做到硬盘之间I/O负载均衡。
6
调整操作系统参数,例如:运行在UNIX操作系统上的ORACLE数据库,可以调整UNIX数据缓冲池的大小,每个进程所能使用的内存大小等参数。 实际上,上述数据库优化措施之间是相互联系的。ORACLE数据库性能恶化表现基本上都是用户响应时间比较长,需要用户长时间的等待。但性能恶化的原因却是多种多样的,有时是多个因素共同造成了性能恶化的结果,这就需要数据库管理员有比较全面的计算机知识,能够敏感地察觉到影响数据库性能的主要原因所在。另外,良好的数据库管理工具对于优化数据库性能也是很重要的

怎样优化oracle数据库

1
调整数据结构的设计。这一部分在开发信息系统之前完成,程序员需要考虑是否使用ORACLE数据库的分区功能,对于经常访问的数据库表是否需要建立索引等。
2
调整应用程序结构设计。这一部分也是在开发信息系统之前完成,程序员在这一步需要考虑应用程序使用什么样的体系结构,是使用传统的Client/Server两层体系结构,还是使用Browser/Web/Database的三层体系结构。不同的应用程序体系结构要求的数据库资源是不同的。
3
调整数据库SQL语句。应用程序的执行最终将归结为数据库中的SQL语句执行,因此SQL语句的执行效率最终决定了ORACLE数据库的性能。ORACLE公司推荐使用ORACLE语句优化器(Oracle Optimizer)和行锁管理器(row-level manager)来调整优化SQL语句。
4
调整服务器内存分配。内存分配是在信息系统运行过程中优化配置的,数据库管理员可以根据数据库运行状况调整数据库系统全局区(SGA区)的数据缓冲区、日志缓冲区和共享池的大小;还可以调整程序全局区(PGA区)的大小。需要注意的是,SGA区不是越大越好,SGA区过大会占用操作系统使用的内存而引起虚拟内存的页面交换,这样反而会降低系统。
5
调整硬盘I/O,这一步是在信息系统开发之前完成的。数据库管理员可以将组成同一个表空间的数据文件放在不同的硬盘上,做到硬盘之间I/O负载均衡。
6
调整操作系统参数,例如:运行在UNIX操作系统上的ORACLE数据库,可以调整UNIX数据缓冲池的大小,每个进程所能使用的内存大小等参数。 实际上,上述数据库优化措施之间是相互联系的。ORACLE数据库性能恶化表现基本上都是用户响应时间比较长,需要用户长时间的等待。但性能恶化的原因却是多种多样的,有时是多个因素共同造成了性能恶化的结果,这就需要数据库管理员有比较全面的计算机知识,能够敏感地察觉到影响数据库性能的主要原因所在。另外,良好的数据库管理工具对于优化数据库性能也是很重要的

Oracle等数据库数据量特别大的时候怎样从程序和SQL语句方面优化使查询速度加快

一般最常用的大数据量优化:

1、创建分区表,使查询时的大表尽量分割成小表。Oracle提供范围分区、列表分区、Hash分区以及复合分区,具体选择哪种分区最优,需要根据你的业务数据来确定。

2、创建索引,创建合适的索引可以大大提高查询速度。但是你的这张大表如果会频繁的进行update、insert等操作,索引会导致这些操作变慢。就有可能需要进行动态索引的使用。

3、优化复杂SQL;对复杂的SQL进行合理的优化,这个有时候也需要根据你的数据情况来优化,可以参考一些SQL语句优化方面的文档。

怎么使用 基于oracle的sql优化

(1) 选择最有效率的表名顺序(只在基于规则的优化器中有效):
ORACLE的解析器按照从右到左的顺序处理FROM子句中的表名,FROM子句中写在最后的表(基础表 driving table)将被最先处理,在FROM子句中包含多个表的情况下,你必须选择记录条数最少的表作为基础表。如果有3个以上的表连接查询, 那就需要选择交叉表(intersection table)作为基础表, 交叉表是指那个被其他表所引用的表.
(2) WHERE子句中的连接顺序.:
ORACLE采用自下而上的顺序解析WHERE子句,根据这个原理,表之间的连接必须写在其他WHERE条件之前, 那些可以过滤掉最大数量记录的条件必须写在WHERE子句的末尾.
(3) SELECT子句中避免使用 ‘ * ‘:
ORACLE在解析的过程中, 会将'*' 依次转换成所有的列名, 这个工作是通过查询数据字典完成的, 这意味着将耗费更多的时间
(4) 减少访问数据库的次数:
ORACLE在内部执行了许多工作: 解析SQL语句, 估算索引的利用率, 绑定变量 , 读数据块等;
(5) 在SQL*Plus , SQL*Forms和Pro*C中重新设置ARRAYSIZE参数, 可以增加每次数据库访问的检索数据量 ,建议值为200
(6) 使用DECODE函数来减少处理时间:
使用DECODE函数可以避免重复扫描相同记录或重复连接相同的表.
(7) 整合简单,无关联的数据库访问:
如果你有几个简单的数据库查询语句,你可以把它们整合到一个查询中(即使它们之间没有关系)
(8) 删除重复记录:
最高效的删除重复记录方法 ( 因为使用了ROWID)例子:
DELETE FROM EMP E WHERE E.ROWID > (SELECT MIN(X.ROWID)
FROM EMP X WHERE X.EMP_NO = E.EMP_NO);
(9) 用TRUNCATE替代DELETE:
当删除表中的记录时,在通常情况下, 回滚段(rollback segments ) 用来存放可以被恢复的信息. 如果你没有COMMIT事务,ORACLE会将数据恢复到删除之前的状态(准确地说是恢复到执行删除命令之前的状况) 而当运用TRUNCATE时, 回滚段不再存放任何可被恢复的信息.当命令运行后,数据不能被恢复.因此很少的资源被调用,执行时间也会很短. (译者按: TRUNCATE只在删除全表适用,TRUNCATE是DDL不是DML)
(10) 尽量多使用COMMIT:
只要有可能,在程序中尽量多使用COMMIT, 这样程序的性能得到提高,需求也会因为COMMIT所释放的资源而减少:
COMMIT所释放的资源:
a. 回滚段上用于恢复数据的信息.
b. 被程序语句获得的锁
c. redo log buffer 中的空间
d. ORACLE为管理上述3种资源中的内部花费
(11) 用Where子句替换HAVING子句:
避免使用HAVING子句, HAVING 只会在检索出所有记录之后才对结果集进行过滤. 这个处理需要排序,总计等操作. 如果能通过WHERE子句*记录的数目,那就能减少这方面的开销. (非oracle中)on、where、having这三个都可以加条件的子句中,on是最先执行,where次之,having最后,因为on是先把不符合条件的记录过滤后才进行统计,它就可以减少中间运算要处理的数据,按理说应该速度是最快的,where也应该比having快点的,因为它过滤数据后才进行sum,在两个表联接时才用on的,所以在一个表的时候,就剩下where跟having比较了。在这单表查询统计的情况下,如果要过滤的条件没有涉及到要计算字段,那它们的结果是一样的,只是where可以使用rushmore技术,而having就不能,在速度上后者要慢如果要涉及到计算的字段,就表示在没计算之前,这个字段的值是不确定的,根据上篇写的工作流程,where的作用时间是在计算之前就完成的,而having就是在计算后才起作用的,所以在这种情况下,两者的结果会不同。在多表联接查询时,on比where更早起作用。系统首先根据各个表之间的联接条件,把多个表合成一个临时表后,再由where进行过滤,然后再计算,计算完后再由having进行过滤。由此可见,要想过滤条件起到正确的作用,首先要明白这个条件应该在什么时候起作用,然后再决定放在那里
(12) 减少对表的查询:
在含有子查询的SQL语句中,要特别注意减少对表的查询.例子:
SELECT TAB_NAME FROM TABLES WHERE (TAB_NAME,DB_VER) = ( SELECT
TAB_NAME,DB_VER FROM TAB_COLUMNS WHERE VERSION = 604)
(13) 通过内部函数提高SQL效率.:
复杂的SQL往往牺牲了执行效率. 能够掌握上面的运用函数解决问题的方法在实际工作中是非常有意义的
(14) 使用表的别名(Alias):
当在SQL语句中连接多个表时, 请使用表的别名并把别名前缀于每个Column上.这样一来,就可以减少解析的时间并减少那些由Column歧义引起的语法错误.
(15) 用EXISTS替代IN、用NOT EXISTS替代NOT IN:
在许多基于基础表的查询中,为了满足一个条件,往往需要对另一个表进行联接.在这种情况下, 使用EXISTS(或NOT EXISTS)通常将提高查询的效率. 在子查询中,NOT IN子句将执行一个内部的排序和合并. 无论在哪种情况下,NOT IN都是最低效的 (因为它对子查询中的表执行了一个全表遍历). 为了避免使用NOT IN ,我们可以把它改写成外连接(Outer Joins)或NOT EXISTS.
例子:
(高效)SELECT * FROM EMP (基础表) WHERE EMPNO > 0 AND EXISTS (SELECT ‘X' FROM DEPT WHERE DEPT.DEPTNO = EMP.DEPTNO AND LOC = ‘MELB')
(低效)SELECT * FROM EMP (基础表) WHERE EMPNO > 0 AND DEPTNO IN(SELECT DEPTNO FROM DEPT WHERE LOC = ‘MELB')
(16) 识别'低效执行'的SQL语句:
虽然目前各种关于SQL优化的图形化工具层出不穷,但是写出自己的SQL工具来解决问题始终是一个最好的方法:
SELECT EXECUTIONS , DISK_READS, BUFFER_GETS,
ROUND((BUFFER_GETS-DISK_READS)/BUFFER_GETS,2) Hit_radio,
ROUND(DISK_READS/EXECUTIONS,2) Reads_per_run,
SQL_TEXT
FROM V$SQLAREA
WHERE EXECUTIONS>0
AND BUFFER_GETS > 0
AND (BUFFER_GETS-DISK_READS)/BUFFER_GETS < 0.8
ORDER BY 4 DESC;

(17) 用索引提高效率:
索引是表的一个概念部分,用来提高检索数据的效率,ORACLE使用了一个复杂的自平衡B-tree结构. 通常,通过索引查询数据比全表扫描要快. 当ORACLE找出执行查询和Update语句的最佳路径时, ORACLE优化器将使用索引. 同样在联结多个表时使用索引也可以提高效率. 另一个使用索引的好处是,它提供了主键(primary key)的唯一性验证.。那些LONG或LONG RAW数据类型, 你可以索引几乎所有的列. 通常, 在大型表中使用索引特别有效. 当然,你也会发现, 在扫描小表时,使用索引同样能提高效率. 虽然使用索引能得到查询效率的提高,但是我们也必须注意到它的代价. 索引需要空间来存储,也需要定期维护, 每当有记录在表中增减或索引列被修改时, 索引本身也会被修改. 这意味着每条记录的INSERT , DELETE , UPDATE将为此多付出4 , 5 次的磁盘I/O . 因为索引需要额外的存储空间和处理,那些不必要的索引反而会使查询反应时间变慢.。定期的重构索引是有必要的.:
ALTER INDEX <INDEXNAME> REBUILD <TABLESPACENAME>
(18) 用EXISTS替换DISTINCT:
当提交一个包含一对多表信息(比如部门表和雇员表)的查询时,避免在SELECT子句中使用DISTINCT. 一般可以考虑用EXIST替换, EXISTS 使查询更为迅速,因为RDBMS核心模块将在子查询的条件一旦满足后,立刻返回结果. 例子:
(低效):
SELECT DISTINCT DEPT_NO,DEPT_NAME FROM DEPT D , EMP E
WHERE D.DEPT_NO = E.DEPT_NO
(高效):
SELECT DEPT_NO,DEPT_NAME FROM DEPT D WHERE EXISTS ( SELECT ‘X'
FROM EMP E WHERE E.DEPT_NO = D.DEPT_NO);
(19) sql语句用大写的;因为oracle总是先解析sql语句,把小写的字母转换成大写的再执行
(20) 在java代码中尽量少用连接符“+”连接字符串!
(21) 避免在索引列上使用NOT 通常, 
我们要避免在索引列上使用NOT, NOT会产生在和在索引列上使用函数相同的影响. 当ORACLE”遇到”NOT,他就会停止使用索引转而执行全表扫描.
(22) 避免在索引列上使用计算.
WHERE子句中,如果索引列是函数的一部分.优化器将不使用索引而使用全表扫描.
举例:
低效:
SELECT … FROM DEPT WHERE SAL * 12 > 25000;
高效:
SELECT … FROM DEPT WHERE SAL > 25000/12;
(23) 用>=替代>
高效:
SELECT * FROM EMP WHERE DEPTNO >=4
低效:
SELECT * FROM EMP WHERE DEPTNO >3
两者的区别在于, 前者DBMS将直接跳到第一个DEPT等于4的记录而后者将首先定位到DEPTNO=3的记录并且向前扫描到第一个DEPT大于3的记录.
(24) 用UNION替换OR (适用于索引列)
通常情况下, 用UNION替换WHERE子句中的OR将会起到较好的效果. 对索引列使用OR将造成全表扫描. 注意, 以上规则只针对多个索引列有效. 如果有column没有被索引, 查询效率可能会因为你没有选择OR而降低. 在下面的例子中, LOC_ID 和REGION上都建有索引.
高效:
SELECT LOC_ID , LOC_DESC , REGION
FROM LOCATION
WHERE LOC_ID = 10
UNION
SELECT LOC_ID , LOC_DESC , REGION
FROM LOCATION
WHERE REGION = “MELBOURNE”
低效:
SELECT LOC_ID , LOC_DESC , REGION
FROM LOCATION
WHERE LOC_ID = 10 OR REGION = “MELBOURNE”
如果你坚持要用OR, 那就需要返回记录最少的索引列写在最前面.
(25) 用IN来替换OR
这是一条简单易记的规则,但是实际的执行效果还须检验,在ORACLE8i下,两者的执行路径似乎是相同的. 
低效:
SELECT…. FROM LOCATION WHERE LOC_ID = 10 OR LOC_ID = 20 OR LOC_ID = 30
高效
SELECT… FROM LOCATION WHERE LOC_IN IN (10,20,30);
(26) 避免在索引列上使用IS NULL和IS NOT NULL
避免在索引中使用任何可以为空的列,ORACLE将无法使用该索引.对于单列索引,如果列包含空值,索引中将不存在此记录. 对于复合索引,如果每个列都为空,索引中同样不存在此记录. 如果至少有一个列不为空,则记录存在于索引中.举例: 如果唯一性索引建立在表的A列和B列上, 并且表中存在一条记录的A,B值为(123,null) , ORACLE将不接受下一条具有相同A,B值(123,null)的记录(插入). 然而如果所有的索引列都为空,ORACLE将认为整个键值为空而空不等于空. 因此你可以插入1000 条具有相同键值的记录,当然它们都是空! 因为空值不存在于索引列中,所以WHERE子句中对索引列进行空值比较将使ORACLE停用该索引.
低效: (索引失效)
SELECT … FROM DEPARTMENT WHERE DEPT_CODE IS NOT NULL;
高效: (索引有效)
SELECT … FROM DEPARTMENT WHERE DEPT_CODE >=0;
(27) 总是使用索引的第一个列:
如果索引是建立在多个列上, 只有在它的第一个列(leading column)被where子句引用时,优化器才会选择使用该索引. 这也是一条简单而重要的规则,当仅引用索引的第二个列时,优化器使用了全表扫描而忽略了索引
(28) 用UNION-ALL 替换UNION ( 如果有可能的话):
当SQL语句需要UNION两个查询结果集合时,这两个结果集合会以UNION-ALL的方式被合并, 然后在输出最终结果前进行排序. 如果用UNION ALL替代UNION, 这样排序就不是必要了. 效率就会因此得到提高. 需要注意的是,UNION ALL 将重复输出两个结果集合中相同记录. 因此各位还是要从业务需求分析使用UNION ALL的可行性. UNION 将对结果集合排序,这个操作会使用到SORT_AREA_SIZE这块内存. 对于这块内存的优化也是相当重要的. 下面的SQL可以用来查询排序的消耗量
低效:
SELECT ACCT_NUM, BALANCE_AMT
FROM DEBIT_TRANSACTIONS
WHERE TRAN_DATE = '31-DEC-95'
UNION
SELECT ACCT_NUM, BALANCE_AMT
FROM DEBIT_TRANSACTIONS
WHERE TRAN_DATE = '31-DEC-95'
高效:
SELECT ACCT_NUM, BALANCE_AMT
FROM DEBIT_TRANSACTIONS
WHERE TRAN_DATE = '31-DEC-95'
UNION ALL
SELECT ACCT_NUM, BALANCE_AMT
FROM DEBIT_TRANSACTIONS
WHERE TRAN_DATE = '31-DEC-95'
(29) 用WHERE替代ORDER BY:
ORDER BY 子句只在两种严格的条件下使用索引.
ORDER BY中所有的列必须包含在相同的索引中并保持在索引中的排列顺序.
ORDER BY中所有的列必须定义为非空.
WHERE子句使用的索引和ORDER BY子句中所使用的索引不能并列.
例如:
表DEPT包含以下列:
DEPT_CODE PK NOT NULL
DEPT_DESC NOT NULL
DEPT_TYPE NULL
低效: (索引不被使用)
SELECT DEPT_CODE FROM DEPT ORDER BY DEPT_TYPE
高效: (使用索引)
SELECT DEPT_CODE FROM DEPT WHERE DEPT_TYPE > 0
(30) 避免改变索引列的类型.:
当比较不同数据类型的数据时, ORACLE自动对列进行简单的类型转换.
假设 EMPNO是一个数值类型的索引列.
SELECT … FROM EMP WHERE EMPNO = ‘123'
实际上,经过ORACLE类型转换, 语句转化为:
SELECT … FROM EMP WHERE EMPNO = TO_NUMBER(‘123')
幸运的是,类型转换没有发生在索引列上,索引的用途没有被改变.
现在,假设EMP_TYPE是一个字符类型的索引列.
SELECT … FROM EMP WHERE EMP_TYPE = 123
这个语句被ORACLE转换为:
SELECT … FROM EMP WHERETO_NUMBER(EMP_TYPE)=123
因为内部发生的类型转换, 这个索引将不会被用到! 为了避免ORACLE对你的SQL进行隐式的类型转换, 最好把类型转换用显式表现出来. 注意当字符和数值比较时, ORACLE会优先转换数值类型到字符类型
(31) 需要当心的WHERE子句:
某些SELECT 语句中的WHERE子句不使用索引. 这里有一些例子.
在下面的例子里, (1)‘!=' 将不使用索引. 记住, 索引只能告诉你什么存在于表中, 而不能告诉你什么不存在于表中. (2) ‘||'是字符连接函数. 就象其他函数那样, 停用了索引. (3) ‘+'是数学函数. 就象其他数学函数那样, 停用了索引. (4)相同的索引列不能互相比较,这将会启用全表扫描.
(32) a. 如果检索数据量超过30%的表中记录数.使用索引将没有显著的效率提高.
b. 在特定情况下, 使用索引也许会比全表扫描慢, 但这是同一个数量级上的区别. 而通常情况下,使用索引比全表扫描要块几倍乃至几千倍!
(33) 避免使用耗费资源的操作:
带有DISTINCT,UNION,MINUS,INTERSECT,ORDER BY的SQL语句会启动SQL引擎
执行耗费资源的排序(SORT)功能. DISTINCT需要一次排序操作, 而其他的至少需要执行两次排序. 通常, 带有UNION, MINUS , INTERSECT的SQL语句都可以用其他方式重写. 如果你的数据库的SORT_AREA_SIZE调配得好, 使用UNION , MINUS, INTERSECT也是可以考虑的, 毕竟它们的可读性很强
(34) 优化GROUP BY:
提高GROUP BY 语句的效率, 可以通过将不需要的记录在GROUP BY 之前过滤掉.下面两个查询返回相同结果但第二个明显就快了许多.
低效:
SELECT JOB , AVG(SAL)
FROM EMP
GROUP JOB
HAVING JOB = ‘PRESIDENT'
OR JOB = ‘MANAGER'
高效:
SELECT JOB , AVG(SAL)
FROM EMP
WHERE JOB = ‘PRESIDENT'
OR JOB = ‘MANAGER'
GROUP JOB

怎么使用 基于oracle的sql优化

(1) 选择最有效率的表名顺序(只在基于规则的优化器中有效):
ORACLE的解析器按照从右到左的顺序处理FROM子句中的表名,FROM子句中写在最后的表(基础表 driving table)将被最先处理,在FROM子句中包含多个表的情况下,你必须选择记录条数最少的表作为基础表。如果有3个以上的表连接查询, 那就需要选择交叉表(intersection table)作为基础表, 交叉表是指那个被其他表所引用的表.
(2) WHERE子句中的连接顺序.:
ORACLE采用自下而上的顺序解析WHERE子句,根据这个原理,表之间的连接必须写在其他WHERE条件之前, 那些可以过滤掉最大数量记录的条件必须写在WHERE子句的末尾.
(3) SELECT子句中避免使用 ‘ * ‘:
ORACLE在解析的过程中, 会将'*' 依次转换成所有的列名, 这个工作是通过查询数据字典完成的, 这意味着将耗费更多的时间
(4) 减少访问数据库的次数:
ORACLE在内部执行了许多工作: 解析SQL语句, 估算索引的利用率, 绑定变量 , 读数据块等;
(5) 在SQL*Plus , SQL*Forms和Pro*C中重新设置ARRAYSIZE参数, 可以增加每次数据库访问的检索数据量 ,建议值为200
(6) 使用DECODE函数来减少处理时间:
使用DECODE函数可以避免重复扫描相同记录或重复连接相同的表.
(7) 整合简单,无关联的数据库访问:
如果你有几个简单的数据库查询语句,你可以把它们整合到一个查询中(即使它们之间没有关系)
(8) 删除重复记录:
最高效的删除重复记录方法 ( 因为使用了ROWID)例子:
DELETE FROM EMP E WHERE E.ROWID > (SELECT MIN(X.ROWID)
FROM EMP X WHERE X.EMP_NO = E.EMP_NO);
(9) 用TRUNCATE替代DELETE:
当删除表中的记录时,在通常情况下, 回滚段(rollback segments ) 用来存放可以被恢复的信息. 如果你没有COMMIT事务,ORACLE会将数据恢复到删除之前的状态(准确地说是恢复到执行删除命令之前的状况) 而当运用TRUNCATE时, 回滚段不再存放任何可被恢复的信息.当命令运行后,数据不能被恢复.因此很少的资源被调用,执行时间也会很短. (译者按: TRUNCATE只在删除全表适用,TRUNCATE是DDL不是DML)
(10) 尽量多使用COMMIT:
只要有可能,在程序中尽量多使用COMMIT, 这样程序的性能得到提高,需求也会因为COMMIT所释放的资源而减少:
COMMIT所释放的资源:
a. 回滚段上用于恢复数据的信息.
b. 被程序语句获得的锁
c. redo log buffer 中的空间
d. ORACLE为管理上述3种资源中的内部花费
(11) 用Where子句替换HAVING子句:
避免使用HAVING子句, HAVING 只会在检索出所有记录之后才对结果集进行过滤. 这个处理需要排序,总计等操作. 如果能通过WHERE子句*记录的数目,那就能减少这方面的开销. (非oracle中)on、where、having这三个都可以加条件的子句中,on是最先执行,where次之,having最后,因为on是先把不符合条件的记录过滤后才进行统计,它就可以减少中间运算要处理的数据,按理说应该速度是最快的,where也应该比having快点的,因为它过滤数据后才进行sum,在两个表联接时才用on的,所以在一个表的时候,就剩下where跟having比较了。在这单表查询统计的情况下,如果要过滤的条件没有涉及到要计算字段,那它们的结果是一样的,只是where可以使用rushmore技术,而having就不能,在速度上后者要慢如果要涉及到计算的字段,就表示在没计算之前,这个字段的值是不确定的,根据上篇写的工作流程,where的作用时间是在计算之前就完成的,而having就是在计算后才起作用的,所以在这种情况下,两者的结果会不同。在多表联接查询时,on比where更早起作用。系统首先根据各个表之间的联接条件,把多个表合成一个临时表后,再由where进行过滤,然后再计算,计算完后再由having进行过滤。由此可见,要想过滤条件起到正确的作用,首先要明白这个条件应该在什么时候起作用,然后再决定放在那里
(12) 减少对表的查询:
在含有子查询的SQL语句中,要特别注意减少对表的查询.例子:
SELECT TAB_NAME FROM TABLES WHERE (TAB_NAME,DB_VER) = ( SELECT
TAB_NAME,DB_VER FROM TAB_COLUMNS WHERE VERSION = 604)
(13) 通过内部函数提高SQL效率.:
复杂的SQL往往牺牲了执行效率. 能够掌握上面的运用函数解决问题的方法在实际工作中是非常有意义的
(14) 使用表的别名(Alias):
当在SQL语句中连接多个表时, 请使用表的别名并把别名前缀于每个Column上.这样一来,就可以减少解析的时间并减少那些由Column歧义引起的语法错误.
(15) 用EXISTS替代IN、用NOT EXISTS替代NOT IN:
在许多基于基础表的查询中,为了满足一个条件,往往需要对另一个表进行联接.在这种情况下, 使用EXISTS(或NOT EXISTS)通常将提高查询的效率. 在子查询中,NOT IN子句将执行一个内部的排序和合并. 无论在哪种情况下,NOT IN都是最低效的 (因为它对子查询中的表执行了一个全表遍历). 为了避免使用NOT IN ,我们可以把它改写成外连接(Outer Joins)或NOT EXISTS.
例子:
(高效)SELECT * FROM EMP (基础表) WHERE EMPNO > 0 AND EXISTS (SELECT ‘X' FROM DEPT WHERE DEPT.DEPTNO = EMP.DEPTNO AND LOC = ‘MELB')
(低效)SELECT * FROM EMP (基础表) WHERE EMPNO > 0 AND DEPTNO IN(SELECT DEPTNO FROM DEPT WHERE LOC = ‘MELB')
(16) 识别'低效执行'的SQL语句:
虽然目前各种关于SQL优化的图形化工具层出不穷,但是写出自己的SQL工具来解决问题始终是一个最好的方法:
SELECT EXECUTIONS , DISK_READS, BUFFER_GETS,
ROUND((BUFFER_GETS-DISK_READS)/BUFFER_GETS,2) Hit_radio,
ROUND(DISK_READS/EXECUTIONS,2) Reads_per_run,
SQL_TEXT
FROM V$SQLAREA
WHERE EXECUTIONS>0
AND BUFFER_GETS > 0
AND (BUFFER_GETS-DISK_READS)/BUFFER_GETS < 0.8
ORDER BY 4 DESC;

(17) 用索引提高效率:
索引是表的一个概念部分,用来提高检索数据的效率,ORACLE使用了一个复杂的自平衡B-tree结构. 通常,通过索引查询数据比全表扫描要快. 当ORACLE找出执行查询和Update语句的最佳路径时, ORACLE优化器将使用索引. 同样在联结多个表时使用索引也可以提高效率. 另一个使用索引的好处是,它提供了主键(primary key)的唯一性验证.。那些LONG或LONG RAW数据类型, 你可以索引几乎所有的列. 通常, 在大型表中使用索引特别有效. 当然,你也会发现, 在扫描小表时,使用索引同样能提高效率. 虽然使用索引能得到查询效率的提高,但是我们也必须注意到它的代价. 索引需要空间来存储,也需要定期维护, 每当有记录在表中增减或索引列被修改时, 索引本身也会被修改. 这意味着每条记录的INSERT , DELETE , UPDATE将为此多付出4 , 5 次的磁盘I/O . 因为索引需要额外的存储空间和处理,那些不必要的索引反而会使查询反应时间变慢.。定期的重构索引是有必要的.:
ALTER INDEX <INDEXNAME> REBUILD <TABLESPACENAME>
(18) 用EXISTS替换DISTINCT:
当提交一个包含一对多表信息(比如部门表和雇员表)的查询时,避免在SELECT子句中使用DISTINCT. 一般可以考虑用EXIST替换, EXISTS 使查询更为迅速,因为RDBMS核心模块将在子查询的条件一旦满足后,立刻返回结果. 例子:
(低效):
SELECT DISTINCT DEPT_NO,DEPT_NAME FROM DEPT D , EMP E
WHERE D.DEPT_NO = E.DEPT_NO
(高效):
SELECT DEPT_NO,DEPT_NAME FROM DEPT D WHERE EXISTS ( SELECT ‘X'
FROM EMP E WHERE E.DEPT_NO = D.DEPT_NO);
(19) sql语句用大写的;因为oracle总是先解析sql语句,把小写的字母转换成大写的再执行
(20) 在java代码中尽量少用连接符“+”连接字符串!
(21) 避免在索引列上使用NOT 通常, 
我们要避免在索引列上使用NOT, NOT会产生在和在索引列上使用函数相同的影响. 当ORACLE”遇到”NOT,他就会停止使用索引转而执行全表扫描.
(22) 避免在索引列上使用计算.
WHERE子句中,如果索引列是函数的一部分.优化器将不使用索引而使用全表扫描.
举例:
低效:
SELECT … FROM DEPT WHERE SAL * 12 > 25000;
高效:
SELECT … FROM DEPT WHERE SAL > 25000/12;
(23) 用>=替代>
高效:
SELECT * FROM EMP WHERE DEPTNO >=4
低效:
SELECT * FROM EMP WHERE DEPTNO >3
两者的区别在于, 前者DBMS将直接跳到第一个DEPT等于4的记录而后者将首先定位到DEPTNO=3的记录并且向前扫描到第一个DEPT大于3的记录.
(24) 用UNION替换OR (适用于索引列)
通常情况下, 用UNION替换WHERE子句中的OR将会起到较好的效果. 对索引列使用OR将造成全表扫描. 注意, 以上规则只针对多个索引列有效. 如果有column没有被索引, 查询效率可能会因为你没有选择OR而降低. 在下面的例子中, LOC_ID 和REGION上都建有索引.
高效:
SELECT LOC_ID , LOC_DESC , REGION
FROM LOCATION
WHERE LOC_ID = 10
UNION
SELECT LOC_ID , LOC_DESC , REGION
FROM LOCATION
WHERE REGION = “MELBOURNE”
低效:
SELECT LOC_ID , LOC_DESC , REGION
FROM LOCATION
WHERE LOC_ID = 10 OR REGION = “MELBOURNE”
如果你坚持要用OR, 那就需要返回记录最少的索引列写在最前面.
(25) 用IN来替换OR
这是一条简单易记的规则,但是实际的执行效果还须检验,在ORACLE8i下,两者的执行路径似乎是相同的. 
低效:
SELECT…. FROM LOCATION WHERE LOC_ID = 10 OR LOC_ID = 20 OR LOC_ID = 30
高效
SELECT… FROM LOCATION WHERE LOC_IN IN (10,20,30);
(26) 避免在索引列上使用IS NULL和IS NOT NULL
避免在索引中使用任何可以为空的列,ORACLE将无法使用该索引.对于单列索引,如果列包含空值,索引中将不存在此记录. 对于复合索引,如果每个列都为空,索引中同样不存在此记录. 如果至少有一个列不为空,则记录存在于索引中.举例: 如果唯一性索引建立在表的A列和B列上, 并且表中存在一条记录的A,B值为(123,null) , ORACLE将不接受下一条具有相同A,B值(123,null)的记录(插入). 然而如果所有的索引列都为空,ORACLE将认为整个键值为空而空不等于空. 因此你可以插入1000 条具有相同键值的记录,当然它们都是空! 因为空值不存在于索引列中,所以WHERE子句中对索引列进行空值比较将使ORACLE停用该索引.
低效: (索引失效)
SELECT … FROM DEPARTMENT WHERE DEPT_CODE IS NOT NULL;
高效: (索引有效)
SELECT … FROM DEPARTMENT WHERE DEPT_CODE >=0;
(27) 总是使用索引的第一个列:
如果索引是建立在多个列上, 只有在它的第一个列(leading column)被where子句引用时,优化器才会选择使用该索引. 这也是一条简单而重要的规则,当仅引用索引的第二个列时,优化器使用了全表扫描而忽略了索引
(28) 用UNION-ALL 替换UNION ( 如果有可能的话):
当SQL语句需要UNION两个查询结果集合时,这两个结果集合会以UNION-ALL的方式被合并, 然后在输出最终结果前进行排序. 如果用UNION ALL替代UNION, 这样排序就不是必要了. 效率就会因此得到提高. 需要注意的是,UNION ALL 将重复输出两个结果集合中相同记录. 因此各位还是要从业务需求分析使用UNION ALL的可行性. UNION 将对结果集合排序,这个操作会使用到SORT_AREA_SIZE这块内存. 对于这块内存的优化也是相当重要的. 下面的SQL可以用来查询排序的消耗量
低效:
SELECT ACCT_NUM, BALANCE_AMT
FROM DEBIT_TRANSACTIONS
WHERE TRAN_DATE = '31-DEC-95'
UNION
SELECT ACCT_NUM, BALANCE_AMT
FROM DEBIT_TRANSACTIONS
WHERE TRAN_DATE = '31-DEC-95'
高效:
SELECT ACCT_NUM, BALANCE_AMT
FROM DEBIT_TRANSACTIONS
WHERE TRAN_DATE = '31-DEC-95'
UNION ALL
SELECT ACCT_NUM, BALANCE_AMT
FROM DEBIT_TRANSACTIONS
WHERE TRAN_DATE = '31-DEC-95'
(29) 用WHERE替代ORDER BY:
ORDER BY 子句只在两种严格的条件下使用索引.
ORDER BY中所有的列必须包含在相同的索引中并保持在索引中的排列顺序.
ORDER BY中所有的列必须定义为非空.
WHERE子句使用的索引和ORDER BY子句中所使用的索引不能并列.
例如:
表DEPT包含以下列:
DEPT_CODE PK NOT NULL
DEPT_DESC NOT NULL
DEPT_TYPE NULL
低效: (索引不被使用)
SELECT DEPT_CODE FROM DEPT ORDER BY DEPT_TYPE
高效: (使用索引)
SELECT DEPT_CODE FROM DEPT WHERE DEPT_TYPE > 0
(30) 避免改变索引列的类型.:
当比较不同数据类型的数据时, ORACLE自动对列进行简单的类型转换.
假设 EMPNO是一个数值类型的索引列.
SELECT … FROM EMP WHERE EMPNO = ‘123'
实际上,经过ORACLE类型转换, 语句转化为:
SELECT … FROM EMP WHERE EMPNO = TO_NUMBER(‘123')
幸运的是,类型转换没有发生在索引列上,索引的用途没有被改变.
现在,假设EMP_TYPE是一个字符类型的索引列.
SELECT … FROM EMP WHERE EMP_TYPE = 123
这个语句被ORACLE转换为:
SELECT … FROM EMP WHERETO_NUMBER(EMP_TYPE)=123
因为内部发生的类型转换, 这个索引将不会被用到! 为了避免ORACLE对你的SQL进行隐式的类型转换, 最好把类型转换用显式表现出来. 注意当字符和数值比较时, ORACLE会优先转换数值类型到字符类型
(31) 需要当心的WHERE子句:
某些SELECT 语句中的WHERE子句不使用索引. 这里有一些例子.
在下面的例子里, (1)‘!=' 将不使用索引. 记住, 索引只能告诉你什么存在于表中, 而不能告诉你什么不存在于表中. (2) ‘||'是字符连接函数. 就象其他函数那样, 停用了索引. (3) ‘+'是数学函数. 就象其他数学函数那样, 停用了索引. (4)相同的索引列不能互相比较,这将会启用全表扫描.
(32) a. 如果检索数据量超过30%的表中记录数.使用索引将没有显著的效率提高.
b. 在特定情况下, 使用索引也许会比全表扫描慢, 但这是同一个数量级上的区别. 而通常情况下,使用索引比全表扫描要块几倍乃至几千倍!
(33) 避免使用耗费资源的操作:
带有DISTINCT,UNION,MINUS,INTERSECT,ORDER BY的SQL语句会启动SQL引擎
执行耗费资源的排序(SORT)功能. DISTINCT需要一次排序操作, 而其他的至少需要执行两次排序. 通常, 带有UNION, MINUS , INTERSECT的SQL语句都可以用其他方式重写. 如果你的数据库的SORT_AREA_SIZE调配得好, 使用UNION , MINUS, INTERSECT也是可以考虑的, 毕竟它们的可读性很强
(34) 优化GROUP BY:
提高GROUP BY 语句的效率, 可以通过将不需要的记录在GROUP BY 之前过滤掉.下面两个查询返回相同结果但第二个明显就快了许多.
低效:
SELECT JOB , AVG(SAL)
FROM EMP
GROUP JOB
HAVING JOB = ‘PRESIDENT'
OR JOB = ‘MANAGER'
高效:
SELECT JOB , AVG(SAL)
FROM EMP
WHERE JOB = ‘PRESIDENT'
OR JOB = ‘MANAGER'
GROUP JOB

oracle数据库有哪两种优化模式

Oracle的优化器共有两种的优化方式,即基于规则的优化方式(Rule-Based Optimization,简称为RBO)和基于代价的优化方式(Cost-Based Optimization,简称为CBO)

A、RBO方式:优化器在分析SQL语句时,所遵循的是Oracle内部预定的一些规则。比如我们常见的,当一个where子句中的一列有索引时去走索引。

B、CBO方式:依词义可知,它是看语句的代价(Cost)了,这里的代价主要指Cpu和内存。

优化器在 判断是否用这种方式时,主要参照的是表及索引的统计信息。统计信息给出表的大小 、有少行、每行的长度等信息。这些统计信息起初在库内是没有的,是你在做analyze后才出现的,很多的时侯过期统计信息会令优化器做出一个错误的执行 计划,因些我们应及时更新这些信息。在Oracle8及以后的版本,Oracle列推荐用CBO的方式。

我们要明了,不一定走索引就是优的 ,比如一个表只有两行数据,一次IO就可以完成全表的检索,而此时走索引时则需要两次IO,这时对这个表做全表扫描(full table scan)是最好的。

Oracle数据库系统调优方法

Oracle 数据库广泛应用在社会的各个领域,特别是在Client/Server模式的应用,但是应用开发者往往碰到整个系统的性能随着数据量的增大显着下降的问题,为了解决这个问题,从以下几个方面:数据库服务器、网络I/O、应用程序等对整个系统加以调整,充分发挥Oracle的效能,提高整个系统的性能。
1 调整数据库服务器的性能
Oracle数据库服务器是整个系统的核心,它的性能高低直接影响整个系统的性能,为了调整Oracle数据库服务器的性能,主要从以下几个方面考虑:
1.1 调整
操作系统以适合Oracle数据库服务器运行
Oracle数据库服务器很大程度上依赖于运行服务器的操作系统,如果操作系统不能提供最好性能,那么无论如何调整,Oracle数据库服务器也无法发挥其应有的性能。
1.1.1 为Oracle数据库服务器规划系统资源
据已有计算机可用资源, 规划分配给Oracle服务器资源原则是:尽可能使Oracle服务器使用资源最大化,特别在Client/Server中尽量让服务器上所有资源都来运行Oracle服务。
1.1.2 调整计算机系统中的内存配置
多数操作系统都用虚存来模拟计算机上更大的内存,它实际上是硬盘上的一定的磁盘空间。当实际的内存空间不能满足应用软件的要求时,操作系统就将用这部分的磁盘空间对内存中的信息进行页面替换,这将引起大量的磁盘I/O操作,使整个服务器的性能下降。为了避免过多地使用虚存,应加大计算机的内存。
1.1.3 为Oracle数据库服务器设置操作系统进程优先级
不要在操作系统中调整Oracle进程的优先级,因为在Oracle数据库系统中,所有的后台和前台数据库服务器进程执行的是同等重要的工作,需要同等的优先级。所以在安装时,让所有的数据库服务器进程都使用缺省的优先级运行。
1.2 调整内存分配
Oracle数据库服务器保留3个基本的内存高速缓存,分别对应3种不同类型的数据:库高速缓存,字典高速缓存和缓冲区高速缓存。库高速缓存和字典高速缓存一起构成共享池,共享池再加上缓冲区高速缓存便构成了系统全程区(SGA)。SGA是对数据库数据进行快速访问的一个系统全程区,若SGA本身需要频繁地进行释放、分配,则不能达到快速访问数据的目的,因此应把SGA放在主存中,不要放在虚拟内存中。内存的调整主要是指调整组成SGA的内存结构的大小来提高系统性能,由于Oracle数据库服务器的内存结构需求与应用密切相关,所以内存结构的调整应在磁盘I/O调整之前进行。
1.2.1 库缓冲区的调整
库缓冲区中包含私用和共享SQL和PL/SQL区,通过比较库缓冲区的命中率决定它的大小。要调整库缓冲区,必须首先了解该库缓冲区的活动情况,库缓冲区的活动统计信息保留在动态性能表v$librarycache数据字典中,可通过查询该表来了解其活动情况,以决定如何调整。
1.2.2 数据字典缓冲区的调整
数据字典缓冲区包含了有关数据库的结构、用户、实体信息。数据字典的命中率,对系统性能影响极大。数据字典缓冲区的使用情况记录在动态性能表v$librarycache中,可通过查询该表来了解其活动情况,以决定如何调整。
1.2.3 缓冲区高速缓存的调整
用户进程所存取的所有数据都是经过缓冲区高速缓存来存取,所以该部分的命中率,对性能至关重要。缓冲区高速缓存的使用情况记录在动态性能表v$sysstat中,可通过查询该表来了解其活动情况,以决定如何调整。
2 调整 Client/Server 模式下的网络 I/O
Client/Server环境中的应用处理是分布在客户应用程序和数据库服务程序之间的。在 Client/Server环境中Client与Server之间的网络I/O是整个系统性能提高的瓶颈,一个客户应用程序引起的网络I/O越少,应用及整个系统的性能越好。减少网络I/O的最重要的一条原则:将应用逻辑集中在数据库服务器中。
2.1 使用Oracle数据库的完整约束性
当为应用建表时,应当为一些有特殊要求的数据加上适当的完整性约束,这样就能实现由数据库本身而不是应用程序来约束数据符合一定的条件。数据库服务器端的完整约束的执行操作是在比SQL语句级别更低的系统机制上优化,它与客户端无关,只在服务器中运行,不需在Client 端和Server端之间传递SQL语句,有效地减轻网络I/O负担。
2.2 使用数据库触发器
完整约束性只能实现一些较简单的数据约束条件,对一些较复杂的事物处理规则就*为力,这时最好不要在应用程序中实施复杂的程序控制,而是应当采用数据库触发器来实施复杂的事物规则。数据库触发器能实现由数据库本身,而不是应用程序,来约束数据符合复杂的事物处理规则,并且容易创建,便于管理,避免大量的网络I/O。
2.3 使用存储过程、存储函数和包
Oracle的存储过程和存储函数是命名的能完成一定功能并且存储在Server端的PL/SQL的集合。包是一种把有关的过程和函数组织封装成一个数据库程序单元的方法。它们相对于应用程序的过程、函数而言,把SQL命令存储在Server端。使用存储过程和存储函数,应用程序不必再包含多个网络操作的SQL语句去执行数据库服务器操作,而是简单调用存储过程和存储函数,在网络上传输的只是调用过程的名字和输出结果,这样就可减少大量的网络I/O。
3 应用程序的调整
3.1 SQL语句的优化
SQL语句的执行速度,可以受很多因素的影响而变化。但主要的影响因素是:驱动表、执行操作的先后顺序和索引的运用。可以由很多不同的方法间接地改变这些因素,以达到最优的执行速度。这里主要探讨当对多个表进行连接查询时应遵循的优化原则:
3.2 建立和使用视图、索引
利用视图可以将基表中的列或行进行裁减、隐藏一部分数据,并且能够将涉及到多个表的复杂查询以视图的方式给出,使应用程序开发简洁快速。利用索引可以提高查询性能,减少磁盘 I/O,优化对数据表的查询,加速SQL语句的执行。但任何时候建立索引都能提高性能,何时建立索引应当遵循以下原则:该表常用来在索引列上查询,该表不常更新、插入、删除等操作,查询出来的结果记录数应控制在原表的2%~4%。
3.3 使用 Oracle 的数组接口
当一个客户应用程序插入一行或用一个查询来向服务器请求某行时,不是发送具有单个行的网络包,而是采用数组处理,即把要插入的多个行或检索出的多个行缓冲在数组中,然后通过很少的几个包就可在网上传送这些数组。例如,一个给定的Select语句返回2000行数据,每行平均大小为40个字节,数据包的大小为4kB,而数组大小参数(arraysize)设置为20 ,则需从服务器发送100个数据包到客户机。如果简单地把(arraysize)设置为2000,那么同样的操作只需要传送 20个数据包。这样就减少了网络的传输量,提高了所有应用的性能。
4 总结
我们在开发应用程序时,遵循上述的方法和原则,对系统进行调整,收到了令人满意的效果。但是应当指出,由于客户机、网络、服务器这3个相互依存的组成部分都必须调整和同步才能产生最佳的性能,因此还应根据系统的具体情况,具体分析和调整。

Oracle数据库系统调优方法

Oracle 数据库广泛应用在社会的各个领域,特别是在Client/Server模式的应用,但是应用开发者往往碰到整个系统的性能随着数据量的增大显着下降的问题,为了解决这个问题,从以下几个方面:数据库服务器、网络I/O、应用程序等对整个系统加以调整,充分发挥Oracle的效能,提高整个系统的性能。
1 调整数据库服务器的性能
Oracle数据库服务器是整个系统的核心,它的性能高低直接影响整个系统的性能,为了调整Oracle数据库服务器的性能,主要从以下几个方面考虑:
1.1 调整
操作系统以适合Oracle数据库服务器运行
Oracle数据库服务器很大程度上依赖于运行服务器的操作系统,如果操作系统不能提供最好性能,那么无论如何调整,Oracle数据库服务器也无法发挥其应有的性能。
1.1.1 为Oracle数据库服务器规划系统资源
据已有计算机可用资源, 规划分配给Oracle服务器资源原则是:尽可能使Oracle服务器使用资源最大化,特别在Client/Server中尽量让服务器上所有资源都来运行Oracle服务。
1.1.2 调整计算机系统中的内存配置
多数操作系统都用虚存来模拟计算机上更大的内存,它实际上是硬盘上的一定的磁盘空间。当实际的内存空间不能满足应用软件的要求时,操作系统就将用这部分的磁盘空间对内存中的信息进行页面替换,这将引起大量的磁盘I/O操作,使整个服务器的性能下降。为了避免过多地使用虚存,应加大计算机的内存。
1.1.3 为Oracle数据库服务器设置操作系统进程优先级
不要在操作系统中调整Oracle进程的优先级,因为在Oracle数据库系统中,所有的后台和前台数据库服务器进程执行的是同等重要的工作,需要同等的优先级。所以在安装时,让所有的数据库服务器进程都使用缺省的优先级运行。
1.2 调整内存分配
Oracle数据库服务器保留3个基本的内存高速缓存,分别对应3种不同类型的数据:库高速缓存,字典高速缓存和缓冲区高速缓存。库高速缓存和字典高速缓存一起构成共享池,共享池再加上缓冲区高速缓存便构成了系统全程区(SGA)。SGA是对数据库数据进行快速访问的一个系统全程区,若SGA本身需要频繁地进行释放、分配,则不能达到快速访问数据的目的,因此应把SGA放在主存中,不要放在虚拟内存中。内存的调整主要是指调整组成SGA的内存结构的大小来提高系统性能,由于Oracle数据库服务器的内存结构需求与应用密切相关,所以内存结构的调整应在磁盘I/O调整之前进行。
1.2.1 库缓冲区的调整
库缓冲区中包含私用和共享SQL和PL/SQL区,通过比较库缓冲区的命中率决定它的大小。要调整库缓冲区,必须首先了解该库缓冲区的活动情况,库缓冲区的活动统计信息保留在动态性能表v$librarycache数据字典中,可通过查询该表来了解其活动情况,以决定如何调整。
1.2.2 数据字典缓冲区的调整
数据字典缓冲区包含了有关数据库的结构、用户、实体信息。数据字典的命中率,对系统性能影响极大。数据字典缓冲区的使用情况记录在动态性能表v$librarycache中,可通过查询该表来了解其活动情况,以决定如何调整。
1.2.3 缓冲区高速缓存的调整
用户进程所存取的所有数据都是经过缓冲区高速缓存来存取,所以该部分的命中率,对性能至关重要。缓冲区高速缓存的使用情况记录在动态性能表v$sysstat中,可通过查询该表来了解其活动情况,以决定如何调整。
2 调整 Client/Server 模式下的网络 I/O
Client/Server环境中的应用处理是分布在客户应用程序和数据库服务程序之间的。在 Client/Server环境中Client与Server之间的网络I/O是整个系统性能提高的瓶颈,一个客户应用程序引起的网络I/O越少,应用及整个系统的性能越好。减少网络I/O的最重要的一条原则:将应用逻辑集中在数据库服务器中。
2.1 使用Oracle数据库的完整约束性
当为应用建表时,应当为一些有特殊要求的数据加上适当的完整性约束,这样就能实现由数据库本身而不是应用程序来约束数据符合一定的条件。数据库服务器端的完整约束的执行操作是在比SQL语句级别更低的系统机制上优化,它与客户端无关,只在服务器中运行,不需在Client 端和Server端之间传递SQL语句,有效地减轻网络I/O负担。
2.2 使用数据库触发器
完整约束性只能实现一些较简单的数据约束条件,对一些较复杂的事物处理规则就*为力,这时最好不要在应用程序中实施复杂的程序控制,而是应当采用数据库触发器来实施复杂的事物规则。数据库触发器能实现由数据库本身,而不是应用程序,来约束数据符合复杂的事物处理规则,并且容易创建,便于管理,避免大量的网络I/O。
2.3 使用存储过程、存储函数和包
Oracle的存储过程和存储函数是命名的能完成一定功能并且存储在Server端的PL/SQL的集合。包是一种把有关的过程和函数组织封装成一个数据库程序单元的方法。它们相对于应用程序的过程、函数而言,把SQL命令存储在Server端。使用存储过程和存储函数,应用程序不必再包含多个网络操作的SQL语句去执行数据库服务器操作,而是简单调用存储过程和存储函数,在网络上传输的只是调用过程的名字和输出结果,这样就可减少大量的网络I/O。
3 应用程序的调整
3.1 SQL语句的优化
SQL语句的执行速度,可以受很多因素的影响而变化。但主要的影响因素是:驱动表、执行操作的先后顺序和索引的运用。可以由很多不同的方法间接地改变这些因素,以达到最优的执行速度。这里主要探讨当对多个表进行连接查询时应遵循的优化原则:
3.2 建立和使用视图、索引
利用视图可以将基表中的列或行进行裁减、隐藏一部分数据,并且能够将涉及到多个表的复杂查询以视图的方式给出,使应用程序开发简洁快速。利用索引可以提高查询性能,减少磁盘 I/O,优化对数据表的查询,加速SQL语句的执行。但任何时候建立索引都能提高性能,何时建立索引应当遵循以下原则:该表常用来在索引列上查询,该表不常更新、插入、删除等操作,查询出来的结果记录数应控制在原表的2%~4%。
3.3 使用 Oracle 的数组接口
当一个客户应用程序插入一行或用一个查询来向服务器请求某行时,不是发送具有单个行的网络包,而是采用数组处理,即把要插入的多个行或检索出的多个行缓冲在数组中,然后通过很少的几个包就可在网上传送这些数组。例如,一个给定的Select语句返回2000行数据,每行平均大小为40个字节,数据包的大小为4kB,而数组大小参数(arraysize)设置为20 ,则需从服务器发送100个数据包到客户机。如果简单地把(arraysize)设置为2000,那么同样的操作只需要传送 20个数据包。这样就减少了网络的传输量,提高了所有应用的性能。
4 总结
我们在开发应用程序时,遵循上述的方法和原则,对系统进行调整,收到了令人满意的效果。但是应当指出,由于客户机、网络、服务器这3个相互依存的组成部分都必须调整和同步才能产生最佳的性能,因此还应根据系统的具体情况,具体分析和调整。

oracle 10g sql 优化

1.Excution Plan
Excution Plan是最基本的调优概念,不管你的调优吹得如何天花乱堕,结果还是要由Excution plan来显示Oracle 最终用什么索引、按什么顺序连接各表,Full Table Scan还是Access by Rowid Index,瓶颈在什么地方。如果没有它的指导,一切调优都是蒙的。

2.Toad for Oracle Xpert
用它来调优在真的好舒服。Quest 吞并了Lecco后,将它整合到了Toad 的SQL Tunning里面:最清晰的执行计划显示,自动生成N条等价SQL、给出优化建议,不同SQL执行计划的对比,还有实际执行的逻辑读、物理读数据等等一目了然。

3.索引
大部分的性能问题其实都是索引应用的问题,Where子句、Order By、Group By 都要用到索引。
一般开发人员认为将索引建全了就可以下班回家了,实则还有颇多的思量和陷阱。

3.1 索引列上不要进行计算
这是最最普遍的失效陷阱,比如where trunc(order_date)=trunc(sysdate), i+2>4。索引失效的原因也简单,索引是针对原值建的二叉树,你将列值*3/4+2折腾一番后,原来的二叉树当然就用不上了。解决的方法:
1. 换成等价语法,比如trunc(order_date) 换成

where order_date>trunc(sysdate)-1 and order_date<trunc(sysdate)+1
2. 特别为计算建立函数索引

create index I_XXXX on shop_order(trunc(order_date))
3. 将计算从等号左边移到右边
这是针对某些无心之失的纠正,把a*2>4 改为a>4/2;把TO_CHAR(zip) = '94002' 改为zip = TO_NUMBER('94002');

3.2 CBO与索引选择性
建了索引也不一定会被Oracle用的,就像个挑食的孩子。基于成本的优化器(CBO, Cost-Based Optimizer),会先看看表的大小,还有索引的重复度,再决定用还是不用。表中有100 条记录而其中有80 个不重复的索引键值. 这个索引的选择性就是80/100 = 0.8,留意Toad里显示索引的Selective和Cardinailty。实在不听话时,就要用hints来调教。
另外,where语句存在多条索引可用时,只会选择其中一条。所以索引也不是越多越好:)

3.3 索引重建
传说中数据更新频繁导致有20%的碎片时,Oracle就会放弃这个索引。宁可信其有之下,应该时常alter index <INDEXNAME> rebuild一下。

3.4 其他要注意的地方
不要使用Not,如goods_no != 2,要改为

where goods_no>2 or goods_no<2
不要使用is null , 如WHERE DEPT_CODE IS NOT NULL 要改为

WHERE DEPT_CODE >=0;
3.5 select 的列如果全是索引列时
又如果没有where 条件,或者where条件全部是索引列时,Oracle 将直接从索引里获取数据而不去读真实的数据表,这样子理论上会快很多,比如

select order_no,order_time from shop_order where shop_no=4
当order_no,order_time,shop_no 这三列全为索引列时,你将看到一个和平时完全不同的执行计划。

3.6 位图索引
传说中当数据值较少,比如某些表示分类、状态的列,应该建位图索引而不是普通的二叉树索引,否则效率低下。不过看执行计划,这些位图索引鲜有被Oracle临幸的。

4.减少查询往返和查询的表
这也是很简单的大道理,程序与Oracle交互的成本极高,所以一个查询能完成的不要分开两次查,如果一个循环执行1万条查询的,怎么都快不到哪里去了。

4.1 封装PL/SQL存储过程
最高级的做法是把循环的操作封装到PL/SQL写的存储过程里,因为存储过程都在服务端执行,所以没有数据往返的消耗。

4.2 封装PL/SQL内部函数
有机会,将一些查询封装到函数里,而在普通SQL里使用这些函数,同样是很有效的优化。

4.3 Decode/Case
但存储过程也麻烦,所以有case/decode把几条条件基本相同的重复查询合并为一条的用法:

SELECT
COUNT(CASE WHEN price < 13 THEN 1 ELSE null END) low,
COUNT(CASE WHEN price BETWEEN 13 AND 15 THEN 1 ELSE null END) med,
COUNT(CASE WHEN price > 15 THEN 1 ELSE null END) high
FROM procts;
4.4 一种Where/Update语法

SELECT TAB_NAME FROM TABLES
WHERE (TAB_NAME,DB_VER) = (( SELECT TAB_NAME,DB_VER)
FROM TAB_COLUMNS WHERE VERSION = 604)

UPDATE EMP
SET (EMP_CAT, SAL_RANGE)
= (SELECT MAX(CATEGORY)FROM EMP_CATEGORIES)

5.其他优化
5.1RowID和ROWNUM
连Hibernate 新版也支持ROWID了,证明它非常有用。比如号称删除重复数据的最快写法:

DELETE FROM EMP E
WHERE E.ROWID > (SELECT MIN(X.ROWID)
FROM EMP X
WHERE X.EMP_NO = E.EMP_NO);

6.终极秘技 - Hints
这是Oracle DBA的玩具,也是终极武器,比如Oracle在CBO,RBO中所做的选择总不合自己心水时,可以用它来强力调教一下Oracle,结果经常让人喜出望外。
如果开发人员没那么多时间来专门学习它,可以依靠Toad SQL opmitzer 来自动生成这些提示,然后对比一下各种提示的实际效果。不过随着10g智能的进化,hints的惊喜少了。

7. 找出要优化的Top SQL
磨了这么久的*,如果找不到敌人是件郁闷的事情。
幸亏10g这方面做得非常好。进入Web管理界面,就能看到当前或者任意一天的SQL列表,按性能排序。
有了它,SQL Trace和TKPROF都可以不用了。

oracle 10g sql 优化

1.Excution Plan
Excution Plan是最基本的调优概念,不管你的调优吹得如何天花乱堕,结果还是要由Excution plan来显示Oracle 最终用什么索引、按什么顺序连接各表,Full Table Scan还是Access by Rowid Index,瓶颈在什么地方。如果没有它的指导,一切调优都是蒙的。

2.Toad for Oracle Xpert
用它来调优在真的好舒服。Quest 吞并了Lecco后,将它整合到了Toad 的SQL Tunning里面:最清晰的执行计划显示,自动生成N条等价SQL、给出优化建议,不同SQL执行计划的对比,还有实际执行的逻辑读、物理读数据等等一目了然。

3.索引
大部分的性能问题其实都是索引应用的问题,Where子句、Order By、Group By 都要用到索引。
一般开发人员认为将索引建全了就可以下班回家了,实则还有颇多的思量和陷阱。

3.1 索引列上不要进行计算
这是最最普遍的失效陷阱,比如where trunc(order_date)=trunc(sysdate), i+2>4。索引失效的原因也简单,索引是针对原值建的二叉树,你将列值*3/4+2折腾一番后,原来的二叉树当然就用不上了。解决的方法:
1. 换成等价语法,比如trunc(order_date) 换成

where order_date>trunc(sysdate)-1 and order_date<trunc(sysdate)+1
2. 特别为计算建立函数索引

create index I_XXXX on shop_order(trunc(order_date))
3. 将计算从等号左边移到右边
这是针对某些无心之失的纠正,把a*2>4 改为a>4/2;把TO_CHAR(zip) = '94002' 改为zip = TO_NUMBER('94002');

3.2 CBO与索引选择性
建了索引也不一定会被Oracle用的,就像个挑食的孩子。基于成本的优化器(CBO, Cost-Based Optimizer),会先看看表的大小,还有索引的重复度,再决定用还是不用。表中有100 条记录而其中有80 个不重复的索引键值. 这个索引的选择性就是80/100 = 0.8,留意Toad里显示索引的Selective和Cardinailty。实在不听话时,就要用hints来调教。
另外,where语句存在多条索引可用时,只会选择其中一条。所以索引也不是越多越好:)

3.3 索引重建
传说中数据更新频繁导致有20%的碎片时,Oracle就会放弃这个索引。宁可信其有之下,应该时常alter index <INDEXNAME> rebuild一下。

3.4 其他要注意的地方
不要使用Not,如goods_no != 2,要改为

where goods_no>2 or goods_no<2
不要使用is null , 如WHERE DEPT_CODE IS NOT NULL 要改为

WHERE DEPT_CODE >=0;
3.5 select 的列如果全是索引列时
又如果没有where 条件,或者where条件全部是索引列时,Oracle 将直接从索引里获取数据而不去读真实的数据表,这样子理论上会快很多,比如

select order_no,order_time from shop_order where shop_no=4
当order_no,order_time,shop_no 这三列全为索引列时,你将看到一个和平时完全不同的执行计划。

3.6 位图索引
传说中当数据值较少,比如某些表示分类、状态的列,应该建位图索引而不是普通的二叉树索引,否则效率低下。不过看执行计划,这些位图索引鲜有被Oracle临幸的。

4.减少查询往返和查询的表
这也是很简单的大道理,程序与Oracle交互的成本极高,所以一个查询能完成的不要分开两次查,如果一个循环执行1万条查询的,怎么都快不到哪里去了。

4.1 封装PL/SQL存储过程
最高级的做法是把循环的操作封装到PL/SQL写的存储过程里,因为存储过程都在服务端执行,所以没有数据往返的消耗。

4.2 封装PL/SQL内部函数
有机会,将一些查询封装到函数里,而在普通SQL里使用这些函数,同样是很有效的优化。

4.3 Decode/Case
但存储过程也麻烦,所以有case/decode把几条条件基本相同的重复查询合并为一条的用法:

SELECT
COUNT(CASE WHEN price < 13 THEN 1 ELSE null END) low,
COUNT(CASE WHEN price BETWEEN 13 AND 15 THEN 1 ELSE null END) med,
COUNT(CASE WHEN price > 15 THEN 1 ELSE null END) high
FROM procts;
4.4 一种Where/Update语法

SELECT TAB_NAME FROM TABLES
WHERE (TAB_NAME,DB_VER) = (( SELECT TAB_NAME,DB_VER)
FROM TAB_COLUMNS WHERE VERSION = 604)

UPDATE EMP
SET (EMP_CAT, SAL_RANGE)
= (SELECT MAX(CATEGORY)FROM EMP_CATEGORIES)

5.其他优化
5.1RowID和ROWNUM
连Hibernate 新版也支持ROWID了,证明它非常有用。比如号称删除重复数据的最快写法:

DELETE FROM EMP E
WHERE E.ROWID > (SELECT MIN(X.ROWID)
FROM EMP X
WHERE X.EMP_NO = E.EMP_NO);

6.终极秘技 - Hints
这是Oracle DBA的玩具,也是终极武器,比如Oracle在CBO,RBO中所做的选择总不合自己心水时,可以用它来强力调教一下Oracle,结果经常让人喜出望外。
如果开发人员没那么多时间来专门学习它,可以依靠Toad SQL opmitzer 来自动生成这些提示,然后对比一下各种提示的实际效果。不过随着10g智能的进化,hints的惊喜少了。

7. 找出要优化的Top SQL
磨了这么久的*,如果找不到敌人是件郁闷的事情。
幸亏10g这方面做得非常好。进入Web管理界面,就能看到当前或者任意一天的SQL列表,按性能排序。
有了它,SQL Trace和TKPROF都可以不用了。

Oracle数据库查询优化方案(处理上百万级记录如何提高处理查询速度)



1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:
select id from t where num is null
可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:
select id from t where num=0
3.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
4.应尽量避免在 where 子句中使用 or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,如:
select id from t where num=10 or num=20
可以这样查询:
select id from t where num=10
union all
select id from t where num=20
5.in 和 not in 也要慎用,否则会导致全表扫描,如:
select id from t where num in(1,2,3)
对于连续的数值,能用 between 就不要用 in 了:
select id from t where num between 1 and 3
6.下面的查询也将导致全表扫描:
select id from t where name like ‘%abc%‘
若要提高效率,可以考虑全文检索。
7. 如果在 where 子句中使用参数,也会导致全表扫描。因为SQL只有在运行时才会解析局部变量,但优化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择。然 而,如果在编译时建立访问计划,变量的值还是未知的,因而无法作为索引选择的输入项。如下面语句将进行全表扫描:
select id from t where num=@num
可以改为强制查询使用索引:
select id from t with(index(索引名)) where num=@num
8.应尽量避免在 where 子句中对字段进行表达式操作,这将导致引擎放弃使用索引而进行全表扫描。如:
select id from t where num/2=100
应改为:
select id from t where num=100*2
9.应尽量避免在where子句中对字段进行函数操作,这将导致引擎放弃使用索引而进行全表扫描。如:
select id from t where substring(name,1,3)=‘abc‘--name以abc开头的id
select id from t where datediff(day,createdate,‘2005-11-30‘)=0--‘2005-11-30’生成的id
应改为:
select id from t where name like ‘abc%‘
select id from t where createdate>=‘2005-11-30‘ and createdate<‘2005-12-1‘
10.不要在 where 子句中的“=”左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引。
11.在使用索引字段作为条件时,如果该索引是复合索引,那么必须使用到该索引中的第一个字段作为条件时才能保证系统使用该索引,否则该索引将不会被使用,并且应尽可能的让字段顺序与索引顺序相一致。
12.不要写一些没有意义的查询,如需要生成一个空表结构:
select col1,col2 into #t from t where 1=0
这类代码不会返回任何结果集,但是会消耗系统资源的,应改成这样:
create table #t(...)
13.很多时候用 exists 代替 in 是一个好的选择:
select num from a where num in(select num from b)
用下面的语句替换:
select num from a where exists(select 1 from b where num=a.num)
14.并不是所有索引对查询都有效,SQL是根据表中数据来进行查询优化的,当索引列有大量数据重复时,SQL查询可能不会去利用索引,如一表中有字段sex,male、female几乎各一半,那么即使在sex上建了索引也对查询效率起不了作用。
15. 索引并不是越多越好,索引固然可以提高相应的 select 的效率,但同时也降低了 insert 及 update 的效率,因为 insert 或 update 时有可能会重建索引,所以怎样建索引需要慎重考虑,视具体情况而定。一个表的索引数最好不要超过6个,若太多则应考虑一些不常使用到的列上建的索引是否有 必要。
16.应尽可能的避免更新 clustered 索引数据列,因为 clustered 索引数据列的顺序就是表记录的物理存储顺序,一旦该列值改变将导致整个表记录的顺序的调整,会耗费相当大的资源。若应用系统需要频繁更新 clustered 索引数据列,那么需要考虑是否应将该索引建为 clustered 索引。
17.尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并会增加存储开销。这是因为引擎在处理查询和连接时会逐个比较字符串中每一个字符,而对于数字型而言只需要比较一次就够了。
18.尽可能的使用 varchar/nvarchar 代替 char/nchar ,因为首先变长字段存储空间小,可以节省存储空间,其次对于查询来说,在一个相对较小的字段内搜索效率显然要高些。
19.任何地方都不要使用 select * from t ,用具体的字段列表代替“*”,不要返回用不到的任何字段。
20.尽量使用表变量来代替临时表。如果表变量包含大量数据,请注意索引非常有限(只有主键索引)。
21.避免频繁创建和删除临时表,以减少系统表资源的消耗。
22.临时表并不是不可使用,适当地使用它们可以使某些例程更有效,例如,当需要重复引用大型表或常用表中的某个数据集时。但是,对于一次性事件,最好使用导出表。
23.在新建临时表时,如果一次性插入数据量很大,那么可以使用 select into 代替 create table,避免造成大量 log ,以提高速度;如果数据量不大,为了缓和系统表的资源,应先create table,然后insert。
24.如果使用到了临时表,在存储过程的最后务必将所有的临时表显式删除,先 truncate table ,然后 drop table ,这样可以避免系统表的较长时间锁定。
25.尽量避免使用游标,因为游标的效率较差,如果游标操作的数据超过1万行,那么就应该考虑改写。
26.使用基于游标的方法或临时表方法之前,应先寻找基于集的解决方案来解决问题,基于集的方法通常更有效。
27. 与临时表一样,游标并不是不可使用。对小型数据集使用 FAST_FORWARD 游标通常要优于其他逐行处理方法,尤其是在必须引用几个表才能获得所需的数据时。在结果集中包括“合计”的例程通常要比使用游标执行的速度快。如果开发时 间允许,基于游标的方法和基于集的方法都可以尝试一下,看哪一种方法的效果更好。
28.在所有的存储过程和触发器的开始处设置 SET NOCOUNT ON ,在结束时设置 SET NOCOUNT OFF 。无需在执行存储过程和触发器的每个语句后向客户端发送 DONE_IN_PROC 消息。
29.尽量避免大事务操作,提高系统并发能力。
30.尽量避免向客户端返回大数据量,若数据量过大,应该考虑相应需求是否合理。
Oracle数据库查询优化方案(处理上百万级记录如何提高处理查询速度)
标签:开始sql查询truncate大数返回大型大量调整ast

Oracle数据库查询优化方案(处理上百万级记录如何提高处理查询速度)



1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:
select id from t where num is null
可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:
select id from t where num=0
3.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
4.应尽量避免在 where 子句中使用 or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,如:
select id from t where num=10 or num=20
可以这样查询:
select id from t where num=10
union all
select id from t where num=20
5.in 和 not in 也要慎用,否则会导致全表扫描,如:
select id from t where num in(1,2,3)
对于连续的数值,能用 between 就不要用 in 了:
select id from t where num between 1 and 3
6.下面的查询也将导致全表扫描:
select id from t where name like ‘%abc%‘
若要提高效率,可以考虑全文检索。
7. 如果在 where 子句中使用参数,也会导致全表扫描。因为SQL只有在运行时才会解析局部变量,但优化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择。然 而,如果在编译时建立访问计划,变量的值还是未知的,因而无法作为索引选择的输入项。如下面语句将进行全表扫描:
select id from t where num=@num
可以改为强制查询使用索引:
select id from t with(index(索引名)) where num=@num
8.应尽量避免在 where 子句中对字段进行表达式操作,这将导致引擎放弃使用索引而进行全表扫描。如:
select id from t where num/2=100
应改为:
select id from t where num=100*2
9.应尽量避免在where子句中对字段进行函数操作,这将导致引擎放弃使用索引而进行全表扫描。如:
select id from t where substring(name,1,3)=‘abc‘--name以abc开头的id
select id from t where datediff(day,createdate,‘2005-11-30‘)=0--‘2005-11-30’生成的id
应改为:
select id from t where name like ‘abc%‘
select id from t where createdate>=‘2005-11-30‘ and createdate<‘2005-12-1‘
10.不要在 where 子句中的“=”左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引。
11.在使用索引字段作为条件时,如果该索引是复合索引,那么必须使用到该索引中的第一个字段作为条件时才能保证系统使用该索引,否则该索引将不会被使用,并且应尽可能的让字段顺序与索引顺序相一致。
12.不要写一些没有意义的查询,如需要生成一个空表结构:
select col1,col2 into #t from t where 1=0
这类代码不会返回任何结果集,但是会消耗系统资源的,应改成这样:
create table #t(...)
13.很多时候用 exists 代替 in 是一个好的选择:
select num from a where num in(select num from b)
用下面的语句替换:
select num from a where exists(select 1 from b where num=a.num)
14.并不是所有索引对查询都有效,SQL是根据表中数据来进行查询优化的,当索引列有大量数据重复时,SQL查询可能不会去利用索引,如一表中有字段sex,male、female几乎各一半,那么即使在sex上建了索引也对查询效率起不了作用。
15. 索引并不是越多越好,索引固然可以提高相应的 select 的效率,但同时也降低了 insert 及 update 的效率,因为 insert 或 update 时有可能会重建索引,所以怎样建索引需要慎重考虑,视具体情况而定。一个表的索引数最好不要超过6个,若太多则应考虑一些不常使用到的列上建的索引是否有 必要。
16.应尽可能的避免更新 clustered 索引数据列,因为 clustered 索引数据列的顺序就是表记录的物理存储顺序,一旦该列值改变将导致整个表记录的顺序的调整,会耗费相当大的资源。若应用系统需要频繁更新 clustered 索引数据列,那么需要考虑是否应将该索引建为 clustered 索引。
17.尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并会增加存储开销。这是因为引擎在处理查询和连接时会逐个比较字符串中每一个字符,而对于数字型而言只需要比较一次就够了。
18.尽可能的使用 varchar/nvarchar 代替 char/nchar ,因为首先变长字段存储空间小,可以节省存储空间,其次对于查询来说,在一个相对较小的字段内搜索效率显然要高些。
19.任何地方都不要使用 select * from t ,用具体的字段列表代替“*”,不要返回用不到的任何字段。
20.尽量使用表变量来代替临时表。如果表变量包含大量数据,请注意索引非常有限(只有主键索引)。
21.避免频繁创建和删除临时表,以减少系统表资源的消耗。
22.临时表并不是不可使用,适当地使用它们可以使某些例程更有效,例如,当需要重复引用大型表或常用表中的某个数据集时。但是,对于一次性事件,最好使用导出表。
23.在新建临时表时,如果一次性插入数据量很大,那么可以使用 select into 代替 create table,避免造成大量 log ,以提高速度;如果数据量不大,为了缓和系统表的资源,应先create table,然后insert。
24.如果使用到了临时表,在存储过程的最后务必将所有的临时表显式删除,先 truncate table ,然后 drop table ,这样可以避免系统表的较长时间锁定。
25.尽量避免使用游标,因为游标的效率较差,如果游标操作的数据超过1万行,那么就应该考虑改写。
26.使用基于游标的方法或临时表方法之前,应先寻找基于集的解决方案来解决问题,基于集的方法通常更有效。
27. 与临时表一样,游标并不是不可使用。对小型数据集使用 FAST_FORWARD 游标通常要优于其他逐行处理方法,尤其是在必须引用几个表才能获得所需的数据时。在结果集中包括“合计”的例程通常要比使用游标执行的速度快。如果开发时 间允许,基于游标的方法和基于集的方法都可以尝试一下,看哪一种方法的效果更好。
28.在所有的存储过程和触发器的开始处设置 SET NOCOUNT ON ,在结束时设置 SET NOCOUNT OFF 。无需在执行存储过程和触发器的每个语句后向客户端发送 DONE_IN_PROC 消息。
29.尽量避免大事务操作,提高系统并发能力。
30.尽量避免向客户端返回大数据量,若数据量过大,应该考虑相应需求是否合理。
Oracle数据库查询优化方案(处理上百万级记录如何提高处理查询速度)
标签:开始sql查询truncate大数返回大型大量调整ast

oracle 10g sql语句优化 本人对这方面不是很熟悉 积分不是问题 少了可以追加

首先,单独拿出一句SQL并不能说怎么优化,因为不知道实际执行情况,不清楚哪个where条件的实际意义。

第二,你的SQL比较特殊,用了很多or,这个是比较明显的可优化项,使用Union或者Union All来代替or,可以明显提高效率,如果原来很慢的话。

第三,你的那些不确定的Where条件中,可能有可以过滤掉大量数据的条件,这些条件要按照过滤掉的数据量从大到小的顺序,排列,最大的那个放到最下面,以此类推。

移动where条件的顺序可能会对SQL产生很大的影响,有的顺序不好,甚至会检索不出来(就是一直等),但调整顺序之后,可能一下就检索出来了。自己多尝试一下,结合你的实际业务逻辑。追问那些不确定的条件就是查询的时候输入进去的条件 比如名称 时间 等等

我自己查了下

p.prid in (select ol.objectid

from operation_log ol

where ol.tablename = 'pr'

and ol.operationpersonid = 6873--这里是传过来的usersid)

主要是这一句耗费时间长了 前面的state主要是判断流流程凡是只要过了某节点就可以查询到

主要是判断凡是6873处理的都可以查询到 如果只要前面的 那驳回了的就查不到了

Top