ContentslistsavailableatScienceDirect
ProgressinOrganicCoatings
journalhomepage:www.elsevier.com/locate/porgcoat
CompositeanticorrosioncoatingsforAZ91Dmagnesiumalloywithmolybdateconversioncoatingandsiliconsol–gelcoatings
JunyingHu,QingLi∗,XiankangZhong,LiangZhang,BoChen
SchoolofChemistryandChemicalEngineering,SouthwestUniversity,TianshengRoad,Chongqing400715,China
articleinfoabstract
ThisstudyevaluatedthecorrosionresistanceofAZ91Dmagnesiumalloycoatedbycompositecoatingswhichconsistedofamolybdateconversioncoatingandthreelayersofsiliconsol–gelcoatings.Formolyb-dateconversiontreatment,variousconditionsincludingthepHofthemolybdatebaths,immersiontimeandbathtemperaturewereinvestigatedusingelectrochemicalmeasurements.ThecorrosionresistanceoftheAZ91Dmagnesiumalloywasimprovedtosomeextentbytheconversioncoatingwiththeoptimalconversionparameters(7.3g/L(NH4)6Mo7O24·6H2OsolutionwithpH5for30minat30◦C).
InordertogetafurtherimprovementofcorrosionprotectionforAZ91Dmagnesiumalloy,threelayersofsiliconsol–gelcoatingsweresuccessfullydepositedonthemolybdateconversioncoatingpre-appliedtoAZ91Dalloy.Thesurfacemorphologyandthecorrosionprotectionperformanceofthecompositecoatingswereinvestigatedindetailusingscanningelectronmicroscope,electrochemicalimpedancespectroscopyaswellaspotentiodynamicpolarizationtests.TheresultsdemonstratedthatthecompositecoatingscouldgreatlyimprovethecorrosionprotectionperformanceoftheAZ91Dmagnesiumalloy.
© 2009 Elsevier B.V. All rights reserved.
Articlehistory:
Received14November2008
Receivedinrevisedform18February2009Accepted22July2009Keywords:
MagnesiumalloyMolybdateSiliconsol–gel
Corrosionresistance
1.Introduction
Magnesiumandmagnesiumalloysexhibitanattractivecombi-nationoflowdensityandhighstrength/weightratiomakingthemidealcandidatesforlight-weightengineeringapplications.How-ever,magnesiumandmagnesiumalloysarerelativelyreactiveandtendtosufferseverecorrosionduringservice[1,2].Toincreasethecorrosionresistanceandtoimprovethepaintadhesionprop-ertiesofmagnesiumalloys,chemicalconversiontreatmentsarecommonlyappliedtothesurface.Thepropertiesofconversioncoatingsarecloselyrelatedtotheirmicrostructureandcompo-sitions,whichinturn,stronglydependonthecompositionofthebasemagnesiumalloys,thepre-treatmentsurfacecleaning,thetypeandcompositionofthesolution,andthecorrespondingoperatingparameterssuchassolutiontemperatureandtypeanddegreeofagitation[3,4].Themostpopularandeffectiveconver-sionprocesstoproduceaprotectivelayeronthesurfaceofmetalsisbasedontheimmersionofthealloysinabathcontainingchro-mateions.Thehexavalentchromiumisreducedduringcorrosiontoformaninsolubletrivalentchromiumspeciesthatterminatestheoxidativeattack[1].Thesecoatingshavebeenshowntopro-videgoodcorrosionprotectionformagnesiumanditsalloysin
∗Correspondingauthor.Tel.:+8602368253884;fax:+8602368367675.E-mailaddresses:liqingswu@yeah.net,akang420@yeah.net,chenbo11-1984@163.com(Q.Li).
0300-9440/$–seefrontmatter© 2009 Elsevier B.V. All rights reserved.doi:10.1016/j.porgcoat.2009.07.003
mildserviceconditions.However,theuseofchromatebathsisbeingprogressivelyrestrictedduetothehightoxicityofthehex-avalentchromiumcompounds.Inordertoavoidthisdrawbackthenewenvironmental-friendlypre-treatmentssuchasstannate,rareearthsaltandphosphate/permanganateconversiontreatmentshavebeenactivelydevelopedintherecentdecades[5–10].
Molybdates,tungstates,permanganatesandvanadates,includ-ingsimilarchemicalelementstochromium(groupsVIandVIIoftheperiodictable),werethefirstchemicalstriedasalternatives[11,12].MolybdenumiswellknownasalocalizedcorrosioninhibitorwhenpresentinelectrolyteasMo(VI)orasanalloyingelementinsteel[13].Becauseofthestrongoxidationcharacter,itsreductionpro-ductionisstabilizationandcanformapassivefilm.Likechromate,molybdateactsasanoxidantinthechemicalconversiontreat-ments,itsadsorbentproductioncaninhibitthepenetrationoftheinimicalionssuchasCl−toprotectthesubstrate.
MolybdatetreatmentshavebeenappliedonZn,Alalloyandsteelsubstratestoimprovethecorrosionresistanceofthosesub-strates[14–16].Molybdatetreatmentshavebeenalsoappliedfordecorativeandsolarabsorptionfunctionalpurposes[17].However,onlyfewworksarereportedontheapplicationofmolybdate-basedconversioncoatingsonmagnesiumalloys.Themainproblemwhichcanarisewhenpreparingmolybdate-basedcoatingonthemagne-siumalloysubstrateisthepresenceofporesandcrackswhatleadtoseriousdeteriorationofprotectivepropertiesofpre-treatmentlayer.Therefore,inordertoavoidthisdisadvantage,oneofthemeasuresistoprepareasealingcoatingtocoverontheporesand
200J.Huetal./ProgressinOrganicCoatings66 (2009) 199–205
Fig.1.Flowchartofpriorsurfacetreatmentsandthecompositecoatingspreparation.
cracks.Amongthevariouscoatingtechniquesthatareavailableforthispurpose,acoatingobtainedwithsol–gelmethodisofspecialinterestespeciallyintoday’senvironmental-protectivesociety.Adhesionofsol–gelcoatingstometalormetaloxidesurfacesisespeciallyfavorable,becausecovalentbondsareformedbetweenthesubstratesurfaceandthesol–gelfilm.Varioussol–gelproce-duresformagnesiumwerereportedintheliteratures[18–23].Inthispaper,anewlyenvironmental-friendlycompositeanti-corrosioncoatingstechniquewasdevelopedforAZ91Dmagnesiumalloytoimproveitscorrosionresistance.Themolybdateconver-sioncoating,whichactsasabarriertoenvironment,improvedthecorrosionresistanceofthemetaltosomeextent,thensiliconsol–gelcoatingwasdepositedonthemolybdateconversioncoatingthroughsol–geltechniquetogetafurtherimprovementofcorro-sionprotectionformagnesiumalloy.Electrochemicaltechniqueshavebeenemployedtocharacterizethecorrosionpropertiesofthesecoatings.2.Experimental2.1.Materials
Die-casteAZ91Dmagnesiumalloywithachemicalcomposition(wt.%)ofMg–8.77Al–0.74Znwasusedinthisstudy.Fig.1outlinestheproceduresforthemechanicalandcompositecoatingstreat-ment.
2.2.Molybdateconversioncoating
Themolybdateconversioncoatingwasobtainedbyimmersionofthesamplesinaerated7.3g/L(NH4)6Mo7O24·6H2Oaqueoussolu-tionaddedwith8g/LKMnO4andmoderateamountofNaFadditiveatdifferenttemperatures(20,30and50◦C).Dippingtimeswere
10,30and60min,respectively.ThepHofthemolybdatebathwasadjustedto3and5byphosphoricacid.Afterconversion,thesam-pleswererinsedindistilledwater,anddriedfor30mininovenat60◦C.
2.3.Siliconsol–gelcoating
Siliconsolwaspreparedfromtetraethylorthosilicate(TEOS),3-glycidoxypropyltrimethoxysilane(GPTMS)andethanol,whichweremixedinamolarratioof0.25:0.75:10,respectively,withthewaterbeingaddeddropwiseintothemixture.Aceticacidwasaddedtopromotethehydrolysisreactionat60◦C,thenammoniawasaddedtoacceleratethecondensationreactionafterhydrolysisfor30min.Theapplicationofsiliconsol–gelcoatingonthecon-versioncoatingwasconductedbyusingaspincoatingtechnique.Coatedsampleswerecuredinanovenat100◦Cfor60min.2.4.Analysisandmeasurements
TheFouriertransforminfrared(FT-IR)spectrumrecordedwithIR-10300(PerkinElmer,America)hasbeencarriedouttoanalyzethestructureofsiliconxerogelpreparedbysiliconsolheattreat-mentat100◦C.
ThepotentiodynamicpolarizationcurveswereperformedusingaPS-268Bsystem(Zhongfu,Beijing,China).Athree-electrodecell,withthesampleastheworkingelectrode,asaturatedcalomelelec-trode(SCE)asreferenceandaplatinumsheetascounterelectrode,wasemployedinthosetests.Theareaoftheworkingelectrodewas1.0cm2.Anaqueoussolutionof3.5wt.%NaClinwhichpHvaluewasadjustedto7withHClorNaOHwasusedaselec-trolyteintheelectrochemicalmeasurements.Afteraninitialdelayof10mininelectrolyte,potentiodynamicpolarizationcurveswerescannedfrom−1.7Vatarateof1mV/s.TheEISmeasurementswere
J.Huetal./ProgressinOrganicCoatings66 (2009) 199–205201
Fig.2.Potentiodynamicpolarizationcurvesin3.5wt.%NaClsolution.(a)Thebaresubstrate.AZ91DmagnesiumalloyimmersedinthemolybdateconversionbathwithpH3for(b)10min,(c)30minand(d)60min.
Fig.3.Potentiodynamicpolarizationcurvestestedin3.5wt.%NaClsolution.AZ91DmagnesiumalloyimmersedinthemolybdateconversionbathwithpH5for(a)10min,(b)30minand(c)60min.
carriedoutusingIM6esystem(Co.Germany)inthefrequencyrangeof105Hzto50mHz.Thesignalamplitudewas10mV.Allsampleswereimmersedfor30minbeforeimpedancemeasurements.Elec-trochemicalimpedancespectrometry(EIS)dataarepresentedasNyquistplotsandBodeplots.Allofthetestswereperformedatroomtemperature.
Thesurfacemorphologyofthemolybdateconversioncoatingandthecompositecoatingswasobservedusingimagesobtainedfromascanningelectronmicroscope(SEM)S-4800(HITACHI,Tokyo,Japan).Theenergyusedforthisanalysiswas20kV.3.Resultsanddiscussion3.1.Molybdateconversioncoating
Inordertoobtainaneffectiveprotectivemolybdatecoversioncoating,itisanissueofprimeimportancefortheinvestiga-tionoftheoptimalconversionparametersincludingthepHofthemolybdatebaths,immersiontimeandbathtempera-ture.Hereinpotentiodynamicpolarizationmeasurementswereemployedasamaintechniqueforthisinvestigation.Therepresen-tativepotentiodynamicpolarizationcurvesforthesamplestreatedbymolybdate-basedbathswithpH3and5fordifferentdippingtimesarepresentedinFigs.2and3,respectively.Atthesametime,therelevantelectrochemicalparameterscalculatedfromtheTafelplotsarealsolistedinTable1.Thepolarizationresistance(Rp)isdeterminedfromtheslopeofthevoltageversuscurrentdensitycurveatthecorrosionpotential.Inthispaper,thepotentialforcal-culationofRpischosenoveranarrowvoltage,from−10to+20mVrelativetocorrosionpotential(Ecorr).Somerelativelyassumptionsoflinerarityhavebeengiven[24].
Corrosioncurrentdensity(Icorr),corrosionpotential(Ecorr)andpolarizationresistance(Rp)areoftenusedtoevaluatethecorrosionprotectivepropertyofthecoatings.Basedonthesedata,itiseasytodrawaconclusionthatthemosteffectiveprotectivemolybdateconversioncoatingcanbeobtainedinasolutionpH5,immersionfor30min.Additionally,thebathtemperaturedidnothavesignif-icanteffectonpreparingthemosteffectiveprotectivemolybdateconversioncoating.
WecandiscusstheinfluenceofthebathpHonthecorrosionprotectionofthemolybdateconversioncoatingwhenthebathtem-peratureandimmersiontimearetreatedasconstants30◦Cand30min,respectively.AsisshowninFigs.2and3aswellasTable1,itcanbeseenthatthemorecorrosionresistiveconversioncoat-ingswereobtainedusingbathswithpH5incontrasttopH3.TheEcorrforthesamplestreatedinthebathswithpH3and5is−1.450and−1.435V,respectively.AndalowerIcorrofthecoatingcanbeobtainedfrombeingtreatedinpH5solutioncomparedwiththecaseofpH3.
Theimmersiontimealsosignificantlyaffectedtheprotectiveabilitiesofthesamples.Theeffectofimmersiontimeinthemolyb-datebathswasprominentatpH5.Inthiscase,thelongerthetime,thehigherweretheresistances.Butafter30minthesitua-tionchanged,longerimmersiontimesinthebathsproducedalessprotectivefilm,aswasevidentfromthereductionintheEcorrandtheincreaseinIcorrrecordedforthe60minmolybdate-treatedelec-trode.Presumably,thisisbecausethecrackdistributionisincreasedonthesurfacewhenforimmersiontimebeyond30min,whichwassupportedbyimagesofSEMshowninFig.4(c).Sothebestanti-corrosionmolybdateconversioncoatingwasachievedinthebathswithpH5for30min.
Theincreaseofthebathtemperaturefrom20to50◦Cdidnothaveanysignificanteffect.Thepotentiodynamicpolarizationcurveswerenotlisted.Yangetal.[25]alsodemonstratedthatthetemperatureofthevanadium-basedchemicalconversioncoatingonthecorrosionresistanceofmagnesiumalloydidnothaveobviouseffect.
TheSEMimagesshowninFig.4arethemorphologiesofAZ91Dmagnesiumalloyafterimmersioninmolybdatebathfor10,30and60min.After10minofimmersionintheconversionsolution,thenucleationofthemolybdateconversioncoatingwasjuststartedandcoatingthicknesswasnotenoughtocompletelycoverthesurfaceofthesampleshowninFig.4(a).Fig.4(b)displaysthesur-facemorphologyofAZ91Dmagnesiumalloyaftertheconversioncoatingtreatmentinthemolybdatebathforabout30min.Itcanbeseenthatthemolybdateconversioncoatingpresentsnetworkfeature,andthereweremanymicro-cracksonthesurfaceofthecoating.Thesecracksmaybeduetothereleaseofhydrogenfrom
Table1
TheelectrochemicalparametersofpotentiodynamicpolarizationcurvesofpH5and3calculatedfromtheTafelplots.
pH310min
Ecorr(mV/SCE)Icorr(A/cm2)Rp(cm2)
−1503
17.4×10−5114
30min−1450
9.0×10−5293
60min−1513
14.4×10−5150
pH510min−1510
4.0×10−52
30min−1435
1.76×10−51230
60min−1480
3.8×10−5566
202J.Huetal./ProgressinOrganicCoatings66 (2009) 199–205
Fig.4.SEMimagesonAZ91DmagnesiumalloyinthesolutionofpH5for(a)10min,(b)30min,(c)60min,(d)30minandsiliconsol–gelcoatings.
somechemicalreactionsuchasthereplacementreactionofMginacidsolutionduringtheconversiontreatmentand/orthedehydra-tionofthemolybdateconversioncoatingaftertreatment.Similarphenomenacanbeseenintherareearthconversioncoatingsandpermanganate–phosphateconversioncoatings[6]inmagnesiumalloyaswellasmolybdateconversioncoatingsinzincgalvanisedsteel[11].Fig.4(c)exhibitsthesurfacemorphologyofAZ91Dmag-nesiumalloyafter60minimmersiontreatmentinmolybdatebath.Itisobviousthattheformationofcrackswasmoreseriousforlongerimmersiontimesthanforshortertimes’immersion.
Inspiteoftheachievementforinvestigationtheoptimalparam-etersofthemosteffectiveprotectiveconversioncoatinghasbeenobtained,thecorrosionprotectionofthiscoatingisreallylimitedowingtothedefectsinthecoating.Therefore,furthertreatmentforenhancingthecorrosionprotectionofthemolybdateconversioncoatingisnecessary.3.2.Compositecoatings
ThecompositecoatingsconsistedofaconversioncoatingtreatedbymolybdatebathwithpH5for30minandthreelayersofsiliconsol–gelcoatingspreparedbyaspinningdepositiontechnique.Asatopcoatingofthiscompositecoating,thethreelayersofsiliconsol–gelcoatingplayaverysignificantroleinimprovingthecor-rosionprotectionperformanceofAZ91Dmagnesiumalloy,owingtotheformationofaverystable,continuous,andhighlyadherentprotectivecoatingonthemolybdateconversioncoating.Thesolwasproducedbyatwo-stepprocesswhichincludeshydrolysisviaacidcatalysisandcondensationviabasecatalysis.Asthecrosslink-ingandassemblingoccursuponapplicationofthesiliconsolonthepreparedmolybdatecoatingsimultaneouslywiththeevapora-tionofthesolventandcoatingformationleadingtothecompositecoatings.
Fig.5showstheFT-IRspectraofthesiliconxerogelandthesolprecursors(TEOSandGPTMS).ItisknownthattheSi–O–SiorSi–Ohasanasymmetricstretchingmodeinawideregion.ComparisonoftheIRspectraofthesiliconxerogel,TEOSandGPTMS,siliconxerogelrevealedabroadas(Si–O–Si)(1000–1110cm−1),theas(Si–O)oftheTEOSandGPTMSwaspresentat1081and1088cm−1,respectively.Besides,therewasas(C–O–C)(1194cm−1)intheFT-IRspectraofGPTMSandsiliconxerogel.Basedonthedifferencesliedinhydroxylgroupsinfraredabsorptionband,itwasevidentthattheco-condensationreactionbetweenTEOSandGPTMShadoccurred.Forthesiliconxerogel,theinfraredabsorptionbandofhydroxylgroupappearedat2939cm−1,whereasthebandat2943and2841cm−1attributedtothepresenceofhydroxylgroupinGPTMS.However,thehydroxylgroupinfraredabsorptionbandisnotfoundintheTEOS.
Fig.5.TheFT-IRspectrumofsiliconxerogel,TEOSandGPTMS.
J.Huetal./ProgressinOrganicCoatings66 (2009) 199–205203
Fig.6.Potentiodynamicpolarizationcurvesfor(a)thebaresubstrate,(b)thesingleconversioncoatingand(c)thecompositecoatings.
SEMimageforthecompositecoatingsisshowninFig.4(d).Itcanbeseenthatthecompositecoatingsiscompactandimper-forate.Itwasexpectedthatthecompositecoatingsholdthebestanti-corrosionabilityformagnesiumalloy.Thisobservationwassupportedbythesubsequentelectrochemicalmeasurementresults.
Inordertocharacterizethegeneralcorrosionpropertiesofthecompositecoatings,thepotentiodynamicpolarizationcurveswererecordedinthe3.5wt.%NaClsolution.Therepresentativepolariza-tioncurvesforthecompositecoatingsandtheconversioncoatingareshowninFig.6.Incontrasttothesubstratecoatedwithasin-gleconversioncoating,thecompositecoatingsexhibitlowerIcorrandhigherEcorrindicatingthatthecompositecoatinghasbettercorrosionprotectionperformancecomparedwiththesinglecon-versioncoating.Itdemonstratesthatthesiliconsol–gelcoatingscancovertheporesandcracksonthemolybdateconversioncoat-ingindeedandofferabettercorrosionprotectionperformance.TherelevantelectrochemicalparameterscalculatedfromtheTafelplotsarelistedinTable2.
AsisshowninTable2,comparedwiththebaresubstrate,thesingleconversioncoatinghasalowercorrosioncurrentdensity(Icorr),highercorrosionpotential(Ecorr)andlargerpolarizationresistance(Rp).WhileIcorrforthecompositecoatingisdecreasedapproximatelybytwoordersofmagnitude,Ecorrisshiftedposi-tively190mVandRpisincreasedby35-foldcomparedwiththebaresubstrate,respectively.
Theelectrochemicalimpedancespectroscopyisoneofthemostintensivelyusedandpowerfultechniquesfortheinvestigationandpredictionoftheanticorrosionprotection[26].EISwasusedinthisworktoestimateprotectiveabilitiesoftheconversioncoatingandthecompositecoatingsontheAZ91Dmagnesiumalloyinthe3.5wt.%NaClaqueoussolution.AndEISdataforafreshlypolishedsampleofAZ91Dmagnesiumalloywithnocoatingwasincludedasacomparison.
Thelowfrequencyimpedanceisoneoftheparameterswhichcanbeeasilyusedtocomparecorrosionprotectionperformanceofdifferentsystems.Higherimpedancedemonstratesbetterprotec-tion[26].AsshowninFig.7,thebaresubstrateshowedthepoorestcorrosionresistanceafter30minofimmersioninthe3.5wt.%NaClaqueoussolution.Inthelowfrequencyregion,itcanbeseenthattheimpedancedropsasthefrequencydrops,indicatingthatthesurface
Table2
TheelectrochemicalparametersofpotentiodynamicpolarizationcurvescalculatedfromtheTafelplots.
Ecorr(mV/SCE)
Icorr(A/cm2)Rp(cm2)Thesubstrate
−1614.01.29×10−51685.20Theconversioncoating−1435.61.76×10−51230.46Thecompositecoatings
−1425.5
3.80×10−7
58,692.10
Fig.7.EISBodeplotsobtainedin3.5wt.%NaClsolutionfor(a)thebaresubstrate,(b)thesingleconversioncoatingand(c)thecompositecoatings.
oxidelayerofthebaresubstrateformedinairisnotprotective[27].Forsamplesoftheconversioncoatingandthecompositecoatings,thelowfrequencyimpedanceinBodeplotcontinuestoincreaseasthefrequencydrops,indicatingastrongresistancetotheflowofionsandelectronsbythecoatings,hencepreventingcorrosion.Especially,thecompositecoatingsincreasetheimpedancefurtherbyatleasttwoordersofmagnitudecomparedwiththebaresub-strate.ThesameeffectsoncorrosionresistancecanbeobservedinNyquistplot(Fig.8).Thesurfaceresistanceofcompositecoatingswasabout4.5×104cm2,whichisequalto75timestheresis-tanceofbaresubstrate.Thus,itdemonstratesthatthecompositecoatingsserveasaconsiderablyeffectivebarrieragainstcorrosionelectrolyteingressduringEISmeasurement.
Forquantitativeestimationofthecorrosionprotection,exper-imentalimpedancespectrawerefittedusingequivalentcircuits.Theimpedancespectroscopyoftheconversioncoatingwasmod-eledusingtheschemeshowninFig.9(a).Here,constantphaseelementswereusedinsteadofcapacitancesinordertotakeaccountofthedispersivecharacterofthetimeconstantsoriginat-
Fig.8.EISNyquistplotsobtained3.5wt.%NaClsolutionfor(1):(a)thebaresubstrateand(b)conversioncoating,(2)thecompositecoatings.
204J.Huetal./ProgressinOrganicCoatings66 (2009) 199–205
Table3
ThemainfittingparametersforEISdataobtainedfortheconversioncoatingandthecompositecoatings.
Rinter(cm2)
Rconv(cm2)Rsol(cm2)Rpolar(cm2)Cdl(F/cm2)Conversioncoating39.91366.0Compositecoatings
138.9
1032.0
Fig.9.Theconversioncoatingequivalentcircuit(a)and(b)thefittingresult.
Fig.10.Thecompositecoatingsequivalentcircuit(a)and(b)thefittingresult.
–552.95.03×10−416,720.0
29,260.0
2.98×10−7
ingfromthenonuniformityofthecoatings.Rsoltistheresistanceofsolution;RinterandQinterrefertotheresistanceandthecapac-itanceofsolution/coatinginterface,respectively;RconvandQconvrepresenttheresistanceofconversioncoating,respectively.Thepresenceofseveralporesandcracksisontheconversioncoating,inwhichpenetrationofactivechlorideionsandwaterleadstopar-tialdestruction.Withthedevelopmentofthecorrosionprocess,thepolarizationresistanceRpolaranddoublelayercapacitanceCdlshouldbeaddedinthefittingcircuitduetotheappearanceofanewtimeconstantinthelowfrequencyregion.ThecorrespondingequivalentcircuitfortheEISofthecompositecoatingsisshowninFig.10(a).Comparedwiththefittingcircuitofconversioncoating,RsolandQsolrepresentingtheresistanceandcapacitanceofsol–gelcoating,respectively,areaddedtothisoneduetothedepositionofsiliconcoatingsontheconversioncoating.
BasedonthemainparametersforEISdataobtainedforthebothcoatingslistedinTable3,agreatimprovementoncorro-sionresistanceofthesubstratehasbeenobtainedowingtothecontributionofcompositecoatingswithahighcoatingresistance(R=Rinter+Rsol+Rconv+Rpolar).Namely,thecompositecoatingsactasagoodbarrierforthepenetrationofactivechlorideionsandwater,subsequentlyenhancingtheanticorrosionperformanceoftheAZ91Dmagnesiumalloy.Cdlofthecompositecoatingssampleshowsalmostaverylowvalue(2.98×10−7F/cm2)demonstratesexcellentprotectivepropertieseventheabsenceofactivedefectsatsubstrate/coatinginterface.
4.Conclusions
Compositeanti-corrosioncoatingsforAZ91Dmagnesiumalloyhasbeenevaluatedinthiswork.Thefirstcoatingismolybdatecon-versioncoating,whilethesecondisthreelayersofsiliconsol–gelcoatings(appliedbyspincoatingtechniqueafterthedepositionmolybdateconversioncoatingonAZ91Dmagnesiumalloy).
Themolybdateconversioncoating(7.3g/L(NH4)6Mo7O24·6H2OsolutionwithpH5for30minat30◦C)provideshighercorrosionpotentialalloybutalowercorrosioncurrentdensitytotheAZ91Dmagnesiumalloyasindicatedbyelectrochemicalmeasurementscarriedoutatroomtemperature.Themolybdateconversioncoatingpresentsnetworkfeature,andplentyofmicro-cracksexistsonthesurfaceofthecoatingobservedbySEMimage.
Thethreelayersofsiliconsol–gelcoatingscantotallycoverthecracksproducedonthemolybdateconversioncoatingascanbeseenfromtheSEMimage.Itcanexplainwhythecompositecoat-ingsholdthebestcorrosionresistantcomparedwiththesingleconversioncoatingandthebaresubstrate.Acknowledgements
TheauthorsthankthesupportsoftheNaturalScienceFoun-dationofChongqing,China(CSTC.2005BB4055)andHigh-TechCultivationProgramofSouthwestNormalUniversity(No.XSGX06).References
[1]J.E.Gray,B.Luan,J.AlloysCompd.336(2002)88–113.
[2]M.Anık,E.Körpe,Surf.Coat.Technol.201(2007)4702–4710.[3]C.S.Lin,H.C.Lin,K.M.Lin,W.C.Lai,Corros.Sci.48(2006)93–109.
[4]
K.Brunelli,M.Dabalà,I.Calliari,M.Magrini,Corros.Sci.47(2005)9–1000.
J.Huetal./ProgressinOrganicCoatings66 (2009) 199–205
[5][6][7][8][9][10][11][12][13][14][15][16]
H.H.Elsentriecy,K.Azumi,H.Konno,Surf.Coat.Technol.202(2007)532–537.K.Z.Chong,T.S.Shih,Mater.Chem.Phys.80(2003)191–200.
A.L.Rudd,C.B.Breslin,FlorianMansfeld.Corros.Sci.42(2000)275–288.
T.Takenaka,T.Ono,Y.Narazaki,Y.Naka,M.Kawakami,Electrochim.Acta53(2007)117–121.
F.Zucchi,A.Frignani,V.Grassi,G.Trabanelli,C.Monticelli,Corros.Sci.49(2007)42–4552.
F.H.Scholes,C.Soste,A.E.Hughes,S.G.Hardin,P.R.Curtis,Appl.Surf.Sci.253(2006)1770–1780.
E.Almeida,T.C.Diamantino,M.O.Figueiredo,C.Sá,Surf.Coat.Technol.106(1998)8–17.
E.Almeida,L.Fedrizzi,T.C.Diamantino,Surf.Coat.Technol.105(2007)97–101.A.A.O.Magalhˇaes,I.C.P.Margarit,O.R.MAttos,J.Electroanal.Chem.572(2004)433–440.
K.Kurosawa,T.Fukushima,Corros.Sci.29(19)1103–1114.
J.D.Wilcox,D.R.Gabe,M.E.Warwick,Corros.Sci.28(1988)577–585.H.Konno,K.Narumi,H.Habazaki,Corros.Sci.44(2002)18–1900.
205
[17]A.A.O.Magalhães,I.C.P.Margarit,O.R.Mattos,J.Electroanal.Chem.572(2004)
433–440.
[18]A.L.K.Tan,A.M.Soutar,I.F.Annergren,Y.N.Liu,Surf.Coat.Technol.198(2005)
478–482.
[19]A.R.Phain,F.J.Gammel,T.Hack,Surf.Coat.Technol.201(2006)3299–3306.[20]A.R.Phain,F.J.Gammel,T.Hack,H.Haefke,Mater.Corros.56(2005)77–83.[21]J.Hu,Q.Li,X.Zhong,Prog.Org.Coat.63(2008)13–17.[22]Q.Li,X.Zhong,J.Hu,Prog.Org.Coat.63(2008)222–227.[23]X.Zhong,Q.Li,J.Hu,Corros.Sci.50(2008)2304–2309.[24]F.Manseld,Corros.Sci.47(2005)3178–3186.
[25]K.H.Yang,M.D.Ger,W.H.Hwu,Y.Sung,Y.C.Liu,Mater.Chem.Phys.101(2007)
480–485.
[26]S.V.Lamaka,M.L.Zheludkevich,K.A.Yasakau,R.Serra,S.K.Poznyak,M.G.S.
Ferreira,Prog.Org.Coat.58(2007)127–135.
[27]D.F.Roeper,D.Chidambaram,.R.Clayton,G.P.Halada,Electrochim.Acta53
(2008)2130–2134.
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- huatuoyibo.cn 版权所有 湘ICP备2023022426号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务