OptimalNumericalDesignofForced
ConvectionHeatSinks
WilliamB.KruegerandAvramBar-Cohen,Fellow,IEEE
Abstract—Theobjectiveofthispaperistodescribethede-velopmentofacomputationallyefficientcomputer-aideddesign(CAD)method,whichusesafiniteelementnumericalmodel(FEM)coupledwithempiricalcorrelations,tocreateanoptimumheatsinkdesign,subjecttomultipleconstraints.Athermaloptimization“challenge”problem,representativeofanticipatedheatsinkrequirementsinthenearfuture,issolvedtodemonstratetheproposedmethodology.Particularemphasisisplaceduponmicro-processorcentralprocessingunit(CPU)chipcoolingapplicationswhere,inadditiontothermalrequirements,theheatsinkdesignspecificationincludesconstraintsuponsize,totalmass,andaircoolantpressuredropacrosstheheatsink.
IndexTerms—Automateddesign,designmethodology,numer-icalmethods,optimization,thermalmanagement.
Designvariableoroptimizationinput.
Dimensionlessflowlengthforpressuredrop.Dimensionlesslengthforconvection.Incrementallength.
Fluid(air)density(mass/volume).Ratioofflowareas.
I.INTRODUCTION
T
NOMENCLATURE
Totalductflowarea.Obstructedductarea.
Degreescentigradetemperature.Specificheat(air)(heat/(mass-C)).Hydraulicdiameter(m).
Frictionfactor(dimensionless).
Averageconvectioncoefficientoverflowlength
-.
Losscoefficientsforentranceandexitoffinarray.Thermalconductivity(W/m-C).Flowlength(m).Meters.
Massflowrate(mass/time).
AverageNusseltnumberoverflowlength(dimen-sionless).
Pascalsofpressure.
Prandtlnumber(dimensionless).Thermalresistance.
Reynoldsnumber(dimensionless).
Thermalresistance(junctiontoambient).Meanflowvelocity(/time).Watts(powerorheatflow).Pressuredrop(Pa).Temperature(C).
Temperaturedifference.Heatflow(heat/time).
ManuscriptreceivedSeptember1,2003;revisedJanuary15,2004.ThisworkwasrecommendedforpublicationbyAssociateEditorP.Sathyamurthy.
W.B.KruegeriswiththeDepartmentofMechanicalEngineering,UniversityofMinnesota,TwinCities,MN55812USA(e-mail:wmbkrueger@aol.com).A.Bar-CoheniswiththeDepartmentofMechanicalEngineering,UniversityofMaryland,CollegePark,MA20742USA(e-mail:abc@eng.umd.edu).DigitalObjectIdentifier10.1109/TCAPT.2004.830969
HECENTRALfocusofthisworkisonthedesign,andoptimizationofconvectiveaircoolingsystemsforuseinhighperformanceelectroniccoolingapplications.Theprimarymotivationforthisstudystemsfromthegrowingrequirementsoftheelectronicsindustrytocoolcompact,highpowerdensity,componentsandcircuits,andinparticularmicroprocessorsandpowermodules.[1],[2]indicatethatthegrowthtrendinintegratedcircuit(IC)technologyoverthelastdecadesisexpectedtoextendwellintothe21stcentury.Intheearly1990s,ahigh-endcentralprocessorunitorchip(CPU)dissipatedapproximately30Wofheat.Increasesinclockspeed,chipsize,switchingspeed,andtransistordensityhaveincreasedthepowerdissipationtoapproximately100Wcurrently;with200Wanticipatedinthefirstdecadeofthe21stcentury.Similarly,maximum,currentelectronicdeviceheat
areexpectedtodoubleinthefluxesoftypically25
nextfewyearstoapproximately50[1],[2].
TheconsequenceofthisICgrowthtrendisthatelectroniccoolingcomponentsandsystemswiththecapabilitytoremovefarhigherheatfluxes,volumetricheatdensitiesandtotalheatloads,willberequired.However,themaximumdeviceoperatingtemperaturesarenotexpectedtoincreaseforthecur-rentlypredominantcomplementarymetal-oxidesemiconductor(CMOS)technologyintheelectronicsindustry.Therequiredambientoperatingtemperatureenvelopeisalsonotexpectedtodecreaseinthenearfuture.Ifanything,thedemandforelectronicsystemstooperateinevermoreharshenvironmentsisexpectedtoactuallyincreasetheambienttemperatures.Thus,moreeffective(lowerthermalresistance)coolingsystemswillberequired.
Aircoolingofelectronicsofferslowermanufacturingcost,easeofmaintenance,reliability,andnoenvironmentalconcernsrelativetothealternativesofwatercooling,vaporcompres-sionrefrigeration,ordirectcoolingwithfluorocarbonliquids.Pragmatically,thelimitlesssupplyofairfromthesurroundingstypicallymeansthatnocostswillbeincurredforthecoolantmaterialorthecoolantshippingandtransportation.Finally,themajorityoflandbasedelectronicsystemsusetheatmosphereasanultimatethermodynamicreservoirorheatsink.Assuch,di-rectdissipationofheatintoairtendstosimplifycoolingsystem
1521-3331/04$20.00©2004IEEE
418IEEETRANSACTIONSONCOMPONENTSANDPACKAGINGTECHNOLOGIES,VOL.27,NO.2,JUNE2004
Fig.1.Challengeproblemgeometryandmateriallocations.
design.Whileliquidcoolingsystems,active(coldplate)refrig-eration,refrigeratedorchilledair,andimmersioncoolingareexpectedtoplayaroleinfutureelectroniccoolingsystems,thewidelyacceptedaircoolingofelectronicsisalsoexpectedtoremainpopularifnotpredominant,despitetherelativelypoorthermalpropertiesofair.Successfulrealizationofthehighlyde-mandingcoolingrequirementsoffutureelectroniccomponentswillrequirelowthermalresistance,electronicheatsinksthatarecapableofmeetingstringentlimitsonheatsinkmass,volumeorsize,andaircoolantpressuredrop.Whilecurrentheatsinkdesignsandgeometriesincludeawidevarietyoffinshapesandbasematerialdistributions,parallelplateheatsinks,ofthetypeshowninahalfplanemodelofFig.1continuetobeonepopularchoice[2]andprovideaconvenientgeometryforthedevelop-mentofoptimizationprocedures.
Theheatsinkgeometryusedtodevelopanddemonstratetheoptimumnumericaldesignmethodology,ofthisstudy,isillus-tratedinFigs.1and2.ThesiliconCPUchipservesastheheatsourceatthebottomofFig.1.Dissipatedpowerorheatiscon-ductedthroughthecoppercoreatthecenterofthealuminumbaseintothealuminumfinarray.Thecoolantairflowthenre-movesorconvectsheatoutofthefinarraytotheambient.Thegeometryoftheproposedheatsinkdesigncanberepre-sentedbyavertical,parallelfinarrayonasolidbase.Thepro-posedheatsinkbaseisrectangularatthefinarray,withaformedvolumeofrevolution,createdbyrotatingacurvedsplinearoundtheverticalaxisofsymmetry.Thevolumeofrevolutioncreatedbytherotatedsplineisinspiredbytheleastmaterialradialfinprofiledescribedin[3],whichservesasastartingpointforthisdesignsynthesis.Theflatrectangularplategeometry(betweentherevolvedbaseandfinarray)isusedtointerfacethevolumeofrevolutiontothesquarespecificationenvelope.Thispartic-ulardesignspecificationhasbeendefinedasamicroprocessorheatsink“challengeproblem”forthe2005timeframe[1],[2],asfollows.
—Maximumheatsinkarea
m(0.1m0.1m.—Maximumheatsinkheightm(totalfinsand
base).
—Maximumspaceclaim
cubicmeters(0.1mwide,0.1mlong,0.05mhigh).
—MaximumCPUchipoperatingtemperature
.Fig.2.Challengeproblemdesignvariables.
—
Maximumambienttemperature(inside
enclosure).
—MaximumCPUchippowerdissipation
.—Maximumdesiredheatsinkmass(finsand
base).—Maximumallowablefanhead(pressuredrop)
.(0.15inofwater).
—Coolingairflowratecubicm/s[40cubic
ft/min(c.f.m.)].
Asindicatedabove,thepreviousdesignspecificationrequire-mentsareindeedachallengingproblem,exceedingmostcur-rentheatsinkcapability.Whilethepreviousproblemstatementessentiallyoutlinesthe“challenge”specificationrequirements,severalkeyissuesarelefttothediscretionofthedesigner.
Thetotalrequiredchippowerdissipation
of200Wisspecified,howevernomentionismadeofthedistribution(intimeorspace)ofthedissipatedheatoverthemicro-processorchipsurface.Notethatamaximumspecifiedchiptemperature
of90Catalocalambienttemperatureof40C,allowonetodeterminethemaximumthermalresistanceimpliedbythisspecification
(1)
Asindicatedin(1),themaximumallowablethermalresis-tancepermittedhereinis0.25C/W.Thisthermalresistance
metricorfigureofmerit
representsthetotalthermalre-sistanceallowablefromthechipjunctiontothecoolanttempera-tureorlocalambient.Individualcomponentsof
include:thechipconductiveresistance,chiptoheatsinkcontactresis-tance,theheatsinkandfinarrayconductiveresistance,finarrayconvectiveresistance,andcoolantsensibleheatgainequivalent
resistance.InSectionsIIandIIIofthispaper,
willbeusedasanobjectiveormeritfunctionfortheoptimizationofthepro-posedheatsinkdesign.
Fandriven,forcedconvectionaircoolingisspecifiedforheatremovalfromtheheatsink.Ourconventionwillbetousethemaximumspecifiedairflowrateandallowablepressuredrop,asevenlydistributedacrosstheheatsinkinletsandoutlets.Inkeepingwiththeusualdecouplingbetweenthe“mechanical”sideandthe“electrical”side,thecoolantorairflowisbetween
KRUEGERANDBAR-COHEN:OPTIMALNUMERICALDESIGNOFFORCEDCONVECTIONHEATSINKS419
thefins,andovertheupperorfinnedsurfaceoftheheatsinkbase,notovertheotherheatsinksurfaces.
ExaminationofFig.1indicatesseveraltrade-offsarepossibleorevenrequiredtoachieveasuccessfuldesign.Alargenumberoffinswillprovidealowexternalorconvectiveresistanceduetothelargeextendedsurfaceheattransferarea.Howevertheef-fectiveflowareawillbereducedbythefinthicknessesandanexcessivepressuredropmayresult.Thevolumetricflowrateofthecoolingairwillalsoheavilyinfluenceboththepressuredropandoverallthermalresistance.Ahighcoolingairflowratewillresultinahighflowvelocity,highheattransfercoefficient,
smallsensiblecoolantheatgain,andlow
.Again,theallow-ablepressuredropmaybeexceeded.Conversely,alowcoolantflowratewillhavetheoppositeeffectwithlowerheattransfer
coefficients,largersensibleheatgains,higher
,andlowerpressuredrops.
Thealuminumbasegeometryalsoimpactstheheatsinkper-formance.Athickerbasewillresultinlower(lateralorradial)conductiveheatspreadingresistancefromtheCPU.However,thethickerbasewillalsomovethefinsfurtherfromthechipheatsource,increasingtheaxialorverticalcomponentoftheheatsinkbase’sconductiveresistance.Giventhefiniteallow-ableheatsinkheight(0.05m),athickerbasealsomeansashorterfinarrayheightwithhigherconvectiveresistance(duetodecreasedfinarea),andalargerpressuredropduetothere-ducedflowarea;seeFig.1.Increasingthecoppercorediam-eterwillcertainlydecreasetheinternalconductiveresistanceoftheheatsinkbaseduetothehigherthermalconductivityof
copper(400
-)relativetoaluminum(170-).However,thedensityofcopperisapproximatelythreetimesthatofaluminum,soasevereweightpenaltywillresultfromalargecoppercorediameter.Additionally,afullerorlesstaperedbaseprofilewillresultinlowerinternalconductiveresistance,howeverthemassoftheheatsinkmayeasilyexceedthepaltryspecificationlimitof250g.Thesedesigntrade-offsaremerelyafewoftheissuesthatmustberesolvedinthedesignofthisproposedheatsink,andillustratethepotentialforoptimizationtechniquescoupledwithaFEMtocreateasuperiorheatsinkdesignbysearchingtheapplicabledesignspacefortheoptimaldesign,thusresolvingthepreviouslydiscussedtrade-offs.
II.OPTIMIZATIONMODEL
ThissectionwilldescribethefiniteelementmodelusedtocreatetheoptimalheatsinkdesignsdescribedinSectionsII-A–Eofthispaper.Morespecifically,theheatsinkgeometryforthechallengeproblemheatsinkdesigncanbecharacterizedbyatotalof9inputordesignvariables;(X1,X2,X3,X4,X5,X6,X7,X8,X9).Thesedesignvariablesarethebasicinputstotheoptimizationroutinessubsequentlydiscussed.
A.DesignVariables
Fig.2illustratesthelocationandorientationofthedesignvariables.Thevariable(X1)representstheouterradiusofthefullthicknesscircularbossatthechiplocation.X3isthecoppercoreouterradius,expressedasafractionofthedistancefrom
thechipperimetertotheouterradiusofthecircularbossor(X1).Theminimumchipsizeof0.02msquareisusedhereinforcalculationordemonstrationpurposesinthispaper.ThismodelcouldeasilyaccommodateotherCPUchipsizes.Thedesignvariable(X2)representsthesolidbasethickness,(X4)thenumberoffins(halfplanemodel),and(X5)the(uniform)thicknessofeachcoolingfin.Theaircoolantvolumetricflowrate(X6)istreatedasadesignvariableorinputinthisstudy.Thetaperedbasecurvatureisdefinedbythreeintermediatesplinepointsareplacedateven,radialincrementsovertheta-peredportionoftheheatsinkbase.Theheightofthefirstsplinepoint(dimensionA1inFig.2)issimplydeterminedbydesignvariable(X7),beingafractionofthebasethicknessmultipliedbythebasethicknessordesignvariable(X2).
Theheightofthesecondormiddlesplinepoint(B1inFig.2)isalsodeterminedbytheratio(designvariableX8)multipliedbytheremainingfractionoftheremainingbasethickness;seeFig.2.Inotherwords,thedifferencebetweenthefirstsplinepointheightandthetotalremainingbasethicknessismultipliedbyaratioor(X8)todeterminethesecondsplinepointheight.Thefinaldesignvariable(X9)isalsoaratio,determiningthefinalsplinepointheight(C1inFig.2)usedinasimilarmannerto(X8).Havingdeterminedthethreesplinepointheightsasafunctionofthebasethicknessordesignvariable(X2),afourthorder,continuous,splineconnectsthesplinepoints.There-sultingsplineformstheouterradialsurfaceofrevolutionorheatsinkbasegeometry.Thischaracterizationofthetaperedheatsinkbasecurvatureresultsinamonotonicallydecreasing(out-ward)thickness,capableofproducingawidevarietyofbasegeometries.TheSectionsII-Bdiscussesthematerialselectionsusedinthisstudy.
B.MaterialSelectionandProperties
Fig.1indicatesthemateriallocationsandgeometryusedinthisstudy.Thefactorsinfluencingthematerialselectionsofthispaperaremassdensity,andthermalperformance.Incontrasttothemassdensityconsiderations,thermalperformancefavorstheuseofcopper,foratleastaportionoftheproposedheatsinkasindicatedinTableI(materialproperties),wherethehigherthermalconductivityofcopperwillreducetheinternalconduc-tiveresistanceoftheheatsinkbase,attheexpenseofgreatermass.Ourapproachtotheallocationofthehigherconductivity,higherdensitycopperversusthelowerconductivityandlowerdensityaluminumwasindicatedintheformulationofdesignvariablesinofSectionII-A.
ThismodelwillinitiallyassignacoppercoreregionatthelocationofthehighestheatfluxorattheCPUchip-to-heatsinkinterface.Preliminaryfeasibilitycalculationsprecludedtheob-viousandsimpleallaluminumbasedesignbaseduponthere-quiredvalue.
Theoptimalamountofcopperwillbedeterminedbysolu-tionoftheoptimizationproblemforthedesignvariable(X3)orthecoppercoreradius.Iftheupperlimitof(X3)isapproached,reformulationoftheoptimizationmodeltoextendthecopperregionwouldbeindicated.Anintermediatesolutionoftheop-timalvaluefortheradiusofthecoppercore(X3)withinthespecified0.1to0.9(10%to90%ofthecircularbossradius)wouldindicatereasonableuseofcoppermaterialinthisproblem
420IEEETRANSACTIONSONCOMPONENTSANDPACKAGINGTECHNOLOGIES,VOL.27,NO.2,JUNE2004
TABLEI
MATERIALPROPERTIES[2]
formulation.TheremainingmaterialdiscussionpertainstothechipinterfacematerialshowninTableI.
Theactualchipattachmenttotheheatsinkisamechanicalclampingdeviceasopposedtoadiscretematerialjoint.Theclampforceisintendedtoreducethethermalcontactresistancebetweenthesiliconchipandheatsink.Itwillbeassumedthat
thebestattainablecontactresistancefora1
chipsizeis0.05C/W,andinverselyproportionaltothechiparea.Placingathinlayerof“interface”material,ofappropriatethermalcon-ductivity,betweenthechipandheatsinkemulatesthisthermalcontactresistanceintheFEMmodel.Inthecomputationsdis-cussedherein,a0.1mmlayerwitha20W/mKthermalcon-ductivitywasused.Sinceanyactualinterfacematerialusedonthephysicalsystemislikelytohavenegligiblemass,the“inter-face”materialisomittedfromanymasscalculations.Inadditiontomaterialproperties,theeffectoftheboundaryconditionsandsolutiontechniques(discussedinSectionsII-C–E)isimportanttoproperheatsinkoptimization.C.SolutionTechniques
Thegoverningequationusedforsolutionofthisoptimiza-tionmodelisthewellknownLaplacianconductionequation,orsecondorderpartialdifferentialtemperatureequation,withthefiniteelementanalysisnumericalapproximationtechnique.SeveralfactorssupporttheuseofthefiniteelementmethodandLaplacianconductionequationinthispaper.Firstly,complexandvariablegeometrydiscussedinSectionII-B,precludesanyexistingclosedformsolutiontechnique,oruseofanapprox-imationtechniquesuchastheseparationofvariablesmethod.Anumericalapproximationtechniqueisindicatedforaccuratesolutionoftheheatconductionequationoveracomplicatedge-ometryasstudiedherein.
Secondly,theoptimizationprocesswithninedesignvari-ableswillrequiremanyFEMmodelevaluationsmandatingafastsolutiontechnique.AtypicalsolutiontimeforthisLaplacianmodelisapproximatelyfifteenminutesontheUniversityofMinnesotaMENETsystems;SiliconGraphics(b)R10000processorrunningat150mHzwith500mbytesofmemory.Conjugatesolutions(theNavier–Stokesandenergyequations)foramuchsimplerfinarray,withonlyaconstantbasetemperature,requireapproximately2horafactorofeighttimesmorecomputertime,onthesameequipment.The
excessivecomputationtimeofaconjugatesolvercoupledwithmanymodelevaluationsrequiredbytheoptimizationalgorithmmilitatesafastLaplaciansolution.Anadditionalfactorarguingagainsttheuseofconjugatesolutionsinthispaperisthelackofspecificationorknowledgeabouttheupstreamanddownstreamflowconditionsandgeometry.Ifsuchinformationwereavailable,theadditionalcapabilityofconjugatesolversindeterminingairflowpressuredropsandconvectioncoefficientswouldbeavaluableaddition.However,withthisincomplete“challenge”specification,theadditionalcomplexityandcomputetimeofaconjugatesolverarenotjustified,andidealizationsorsimplificationsmustbemadeforsolutionofthisproblem,regardlessofthesolutionalgorithmselected.Hence,wewillselecttheLaplaciangoverningequa-tion,andFEMapproximationforuseherein.
ThisselectionofaLaplaciansolutionalgorithmrequiresad-ditionalmathematicalmodelsforthecalculationofpressuredrops,sensibleheatgainofthecoolantflow,convectioncoef-ficients,andheatsinkmasscalculations.Mathematicalmodelsfortheseadditionalcalculationswillbe“embedded”orcalcu-latedinternallybytheFEMandarereferredtohereinas“em-beddedmodels.”These“embeddedmodels”fundamentallypro-videtheadditionaldata(beyondthescopeoftheLaplaciansolver)requiredbythe“challengeproblem”specification.Notethatallofthe“embedded”modelsinthisstudyrequirevariousgeometricdimensions(finspacing,finheight,arraylength,etc.)forcalculationofthehydraulicdiameter,heatsinkmass,andotherpertinentquantities.Thesedimensionsareavailablein-ternallyintheFEMeitherasadirectdesignvariableinput,orindirectly,asaresultofthegeneratedmodelgeometry.D.EmbeddedModels
Inordertoprovideacompletesolutionpursuanttothe“chal-lenge”specification,wewillrequireanestimationofthepres-suredropacrossthefinarray.Theairflowratelimitationsandsmallgeometryspecified,forcetheflowregimetobelaminar.Fortunately,theproblemoflaminarflowbetweenparallelplateshasbeenextensivelystudiedincontemporaryliterature.[4],[5]outlineacorrelationforthelaminarflowpressuredropacrossasimilarparallelplatefinarray.Thepressureandvelocitydis-tributionisassumedtobeuniformacrosstheinletofthefinarray.Theupstreamanddownstreamflowgeometryaretakenasasimplerectangularducts;0.1mwide,withtheductheightequaltothefinarrayheight.Alloftheaircoolantenteringthefinarrayattheinletexitsouttheoppositeend;no“bypass”iscon-sideredherein.Therequiredductingsurfacesonthefinarrayinlet,outlet,andtopoffinarrayareomittedforclarityonallfigures.
Asper(2),[4],[5]thepressuredropincludesskinfrictionanddevelopingfloweffectsaswellasentryandexitlosses.The
termin(2)accountsforthepressuredropduetoflowareacontractionexperiencedbyflowenteringthefinarrayfroman
inletduct.The
termin(2)estimatestheskinfrictionanddevelopingflowlosses,andthetermestimatestheoutletorexpansionpressuregain.Theoutletpressuregainiscausedbytheaircoolantflowexpansionwhenthecoolantexitsthefinarrayintoanexhaustduct.Insummary,thecorrelationpresented
KRUEGERANDBAR-COHEN:OPTIMALNUMERICALDESIGNOFFORCEDCONVECTIONHEATSINKS421
in[4],[5],forlaminarflow,pressuredropacrossaductedfinarrayissimilarto
(2)(3)(4)
Equation(4)defines
thedimensionlessstream-wisedistanceasrequiredin(3).Theentranceandexitlosstermsofthepres-suredropcorrelationhavebeencurvefitfromdatain[6]forlaminarflowasper
(5)(6)(7)
Empiricalandanalyticalverificationof(2)arecontainedin[4]and[5]with(2)–(7)providingacompactcomputationallyeffi-cientpressuredropcalculation.
Aconvectionboundaryconditionisalsorequiredtomodeltheheatdissipationfromthefinarrayanduppersurfaceoftheheatsink.TheFEMappliestherequiredconvectiveboundaryconditiontothefinsurfacesaswellasthe“wetted”topoftheheatsinkbase.ThepreviouslyselectedLaplaciansolverre-quiresaprioriestimationoftheconvectiveheattransfercoeffi-cientresultingfromtheairflowinthefinarraytoimplementaconvectiveboundarycondition.Thispaperusesanempir-icalconvectioncorrelationforlaminardevelopingparallelplateflow[7](alsorecommendedin[5]),andsummarizedasfollows.Theaverageheattransfercoefficientalongtheflow-wiselengthofthefinarrayisestimatedby
(8)
In(8),
istheaverageNusseltnumberovertheflowlength,thehydraulicdiameter,andthethermalconductivityofair.Calculationofisaccomplishedby
(9)(10)
Equation(10)definesadimensionlesslengthinthestreamwiseflowdirectionrequiredin(9).Theconstantterm(7.55)in(10)indicatesthefullydevelopedNusseltnumber,withthequotienttermof(9)beingthecorrectionduetodevelopingflow.Theaircoolantfluidpropertiesareevaluatedatanaverage65Ctem-perature,baseduponthespecified,40Cambienttemperature,and90Cmaximumchiptemperature.
Theremainingcomponentoftherequiredconvectiveboundaryconditionisthe(variable)bulktemperatureoftheaircoolant.Inthisstudy,theenergybalance(11),andanassumedlinearlyvariable(increasingalongtheflowdirection)bulk
temperaturewasusedtoapproximatethesensibleheatgainofthecoolantairflow.
Thesensibleheatgainoftheairisaresultoftheconvectiveheattransferfromthe(hotter)finarraytothe(cooler)airflow.Thistemperaturegainofthecoolantairflowcanhaveasignifi-canteffectupontheproposedheatsink’sthermalperformance
.However,theLaplaciansolverisincapableofdirectlycalculatingthesensibleheatgainoftheairoritsconsequentialincreaseinthebulktemperature.Thefinal“embedded”modelindicatedistheenergybalanceequation
(11)
In(11),isthetotalheatflowtothecoolantairflow,whichisalsothetotalheatflowthroughtheheatsinkforthissteadystatesolution,isthemassflowrate(convertedfromaninputordesignvariableX6foratmosphericair),thespecificheat
ofair,and
thetotaltemperaturegainofthecoolantairflow.The“embedded”modelforthesensibleheatgainofthecoolantisaniterativeprocessconsistingofthefollowingsteps.
Atthefirstsolutionofagivensetofdesignvariableinputs,thecoolantheatgainissimplysettozerooratypicalconvec-tiveboundarycondition,themodelsolved,andthetotalheat
flowcalculated.Equation(11)isthensolvedfor
,giventheotherknownterms.Thetemperaturegain
islinearlyapplied(anapproximation)alongthefinflowpassages,andthemodelresolvedforaseconditeration.Again,theaircoolantinlettemperatureisspecifiedat40C.Ifattheendoftheseconditer-ationthetotalheatflow
iswithintwopercentofthefirstit-eration,iterationiscompleteandthemodelwillproceedtopostprocessing.Ifthedifferencebetweenthecalculatedheatflowattheendofanyiteration,andtheprecedingiteration’sheatflow
,isgreaterthantwopercent,(11)isresolvedfor,theboundaryconditionsreapplied,andanotheriterationstarted.Thetwopercentconvergencetoleranceissimplyarea-sonablealbeitarbitraryvalue,anyconvergencecriteriavaluecouldbeused.Attypical,coolantflowratesof0.019cubicm/s(40c.f.m.),twoorthreeiterationsarerequiredtocorrectlyestimatetheaircoolanttemperaturegain.Attheminimumflowrateconsideredhereinof0.007cubicm/s(15c.f.m.),approximatelyfiveiterationswererequiredformostdesigngeometries.Thereasonformoresolutioniterationswithlowerflowratesisthattheinitialiteration’scoolanttemperaturegainbeingzeroisapoorapproximationatlowflowrateswhichinfacthavealargecoolanttemperaturegain.Highercoolantflowrateswithverylowtemperaturegainstendtobebetterapproximationsoftheinitialiteration,andconsequentlyrequirefewersolutioniterations.Theremainingboundaryconditionsusedinthispaperarethehalfplanesymmetrycondition,andthepreviouslydiscussed“junction”temperaturespecification.Ahalfplanesymmetrymodelisusedhereinsimplytoreducecomputationrequirements.Thesimpleadiabaticboundarycon-ditionatthesymmetryplane(seeFig.1)accomplishesthispur-posewhilethespecifiedjunctiontemperaturewasdiscussedinSectionsII-A–C.TheCPUchiptemperature(lowerfaceofthesiliconchipinFig.1)isspecifiedattherequired90Ctemper-atureasper(1),andthepreviouslydiscussedspecification.TheSectionII-Ebrieflydiscussesthenumericalstabilityandmodelverificationeffortsofthisstudy.
422IEEETRANSACTIONSONCOMPONENTSANDPACKAGINGTECHNOLOGIES,VOL.27,NO.2,JUNE2004
E.NumericalStabilityandModelVerification
Thenumericalstabilityofthefiniteelementsolutionmodelwasalsoevaluatedattheoptimumdesignsolution.Attheoptimumdesignsolution,approximately20000nodesordegreesoffreedomwererequiredforanumericallyaccuratesolution,withapproximately12000secondorder,isopara-metricsolidthermalelementsmodelingthesolidbasestructureand2000thermalshellelementsbeingusedforthefinarray.The20000degree-of-freedommodelexhibitedexcellent
numericalstabilityattheoptimumdesign,withthe
meritfunctiondecreasingbylessthan0.001C/Wat8200degreesoffreedom,andincreasingbyapproximately0.001C/W(0.4%ofthenominal0.250value)whenthedegreesoffreedomwereincreasedto65000.Assuch,thenumericalstabilityofthisoptimumsolutionisdemonstrated.
ModelvalidationwasaccomplishedhereinbycomparingtheoptimaldesignofSectionIII,andseveralrandomlygeneratedheatsinkdesignstothecorrespondingoutputsofotheranalyt-icalmethods.Conjugatenumericalsolutions(ICEPAK)andan-alyticalfinarraymethods(UniversityofMinnesotaTHERMNSsoftware)bothagreedwiththecurrentmodelwithinafewper-centonthecalculatedvaluesofconvectioncoefficients,pressuredrops,andheatflows.Havingdiscussedallofthepertinentfea-turesofthisheatsinkanalysismodel,andsolutiontechniques,wewillproceedtotheactualoptimizationtechniquesandre-sultsofthisoptimizationstudy.
III.OPTIMIZATIONTECHNIQUESANDRESULTS
Thethermalmodel,discussedanddevelopedinpreviously,waspreparedforoptimizationandseveraloptimizationrunsweremadetodetermineanoptimaldesign.Brieflyrecallingthediscussionoftheintroduction,thefollowingoptimizationcriteriawereidentifiedinthatsectionandareimplementedherein.Theobjectiveormeritfunction(tobeminimized)istheoverallthermalresistancefromthe“junction”temperatureto
ambienttemperatureor
.Aspreviouslydiscussed,representsathermalfigureofmeritorindexastohowwell
agivenheatsinkwillperform.Wewillminimize
(theobjectiveormeritfunction)subjecttotheconstraintsthat
notexceed0.25C/W,themaximumpressuredropnotexceed38Pa,andthetotalheatsinkmassnotexceed250gofmass.
Thelastthreeconstraintson
,pressuredropandmassarecommonlyreferredtoassideconstraints,orconstraintson
calculatedoutputs.Theuseof
asbothanobjectiveormeritfunctionandsideconstrainttendstoprohibittheoptimizationroutinefromproducingoptimaldesignswithlowmassand
lowcoolantpressuredrop,butexcessivelyhigh
values.Havingdiscussedtheoutputsoftheoptimizationroutinewewillturnourattentiontotherequiredinputs.
Theoptimizationinputsofthisstudyarethepreviouslydis-cusseddesignvariablesX1throughX9;seeFigs.1and2.Inthissection,wewilluseoptimizationtechniquestodeterminethebestsetofinputvariablevaluesordesignvector(X1through
X9)tominimize
(theoutput),subjecttothepreviouslydiscussedsideconstraintsonpressuredrop,thermalresistanceandheatsinkmass.Agivenheatsinkdesignwhichexceedsanyoftheprevioussideconstraintsissaidtobeinfeasible.Inthiscontext,theterminfeasiblesimplymeansoneormoreofthesideconstraintswasviolatedorexceeded.A0.1%toler-anceonfeasibilitylimitswasusedintheoptimizationroutine,technicallyallowingforslightlyhighervaluesofthesidecon-straintstobefeasible.Thefollowingparagraphssummarizethetwodifferentoptimizationalgorithms[8]usedinthisstudy;sub-problemtechniques,andfirstorderorgradientoptimization.Attheinitiationofthefirstorderalgorithm[8],theuserisrequiredtomakeaninitialguessattheoptimumdesign.Theoptimizationmodelisevaluatedattheinitialguess,andtheob-jectivefunctiondetermined.Theindividualdesignvariablesaresubsequentlyslightlyperturbatedaroundtheinitialdesign.TheFEMissolvedateachperturbationforthepurposesofdeter-miningthederivativesoftheobjectivefunctionandsidecon-straintswithrespecttothedesignvariables.Thefirstorderorgradientequationalongwithastepsizealgorithmisthenusedtodeterminethenextiterationpointordesignvector(setofdesignvariables);asrequiredtominimizetheobjectivefunction.Thisprocessiscontinueduntiltheoptimizationconvergencecrite-rionissatisfied.Firstorderoptimizationrequiresthattheopti-mizationmodelbeevaluatedby(1thenumberofdesignvari-ables)ateachiterationpoint.Assuch,firstorderoptimizationcanberegardedasacomputationallyintensive,localapproxi-mationoftheFEMbeingoptimized.
Conversely,inthesub-problemoptimizationmethod,eachdesigniteration,involvesonlyasinglesolutionoftheFEM,andaglobalquadraticapproximation(overtheallowedrangeofdesignvariablesorinputs)isachieved.Thesub-problemmethodofoptimization[8]canbedescribedasanadvanced,zero-ordermethodinthatitsimplyrequiresthevaluesofthedependentvariables(objectivefunctionandsideconstraints)nottheirderivatives.Atthestartofasub-problemoptimization,arequisitenumberofFEMsolutionsaremade,tocreateadatabaseforsubsequentdependentvariablecurvefittingorap-proximation.Thenumberofdesignvariablesor(optimizationinputs)plustwoadditionalsolutionsarerequiredforasimplequadraticapproximation.Inthisstudy,wehaveninedesignvariablesrequiringelevenFEMmodelsolutionsforinitialquadraticapproximation.Thedependent(output)variablesarefirstreplacedwithquadraticapproximationsbymeansofleastsquaresfitting,andtheconstrainedminimizationproblemisconvertedtoanequivalentunconstrainedproblemusingpenaltyfunctions.Aftertheinitialcurvefit,theapproximationfunctionisminimized(todeterminetheestimatedoptimumdesign),theFEMupdatedandsolvedatthe(newly)estimatedoptimumdesign.AftereachsubsequentiterationorsolutionoftheFEM,theapproximatedquadraticmodel(calledthesub-problem)isupdated,minimizationoftheobjectivefunctionperformed,andtheFEMredirectedtoanewdesignuntilconvergenceisachievedorterminationisindicated.
Severalinitialattemptsweremadeatoptimizingthisheatsinkdesignusingthefirstordergradientmethod.Noneofthesecalculationsproducedafeasibledesign.Thesub-problemopti-mizationmethodwasthensuccessfullydeployedwiththeinitialpurposeofsimplyfindingthefeasibledesignspace.Anoptimaldesignfortheheatsink“challenge”problemwassuccessfullyfound,andisindicatedinTableII.TableII,alsoshowsthattheoptimumdesignsatisfiedallofthespecifiedsideconstraints,
KRUEGERANDBAR-COHEN:OPTIMALNUMERICALDESIGNOFFORCEDCONVECTIONHEATSINKS423
TABLEII
SUMMARYOFOPTIMIZATIONRESULTS
withinthespecifieddesignvariablelimits.Thetotalcalcula-tiontimefortheoptimizationrun,wasapproximatelyfourhoursontheUniversityofMinnesotaMENETcomputerpreviouslydescribed.
Convergenceofthesub-problemoptimizationmodelisplottedinFig.3.Notethatthefirstelevenmodeliterationsaresimplyrandomdesignevaluationssolvedtocreateadatabaseforthequadraticorsub-problemapproximation.Thetwelfthsolutionisthefirstattemptatactualoptimization,withiterationnumber29reachingtheoptimaldesign.Designiterations12through27producedinfeasibledesignswhereoneormoreofthesideconstraintswereexceeded.
Designsensitivitycalculationswereperformedontheop-timumdesignofTableIIandrevealedthatnoneoftheindi-vidualdesignvariablescouldbeindividuallyalteredbymorethanapproximately10%fromtheiroptimumvalueswithoutproducinganinfeasibledesign.Thusthefeasibledesignspaceofthisproblemisverysmallcomparedtoanyreasonablerangeoftheinputvariables.
Inordertoillustratethesmallsizeofthefeasibledesignspace,considertheninevariabledesignspaceasaninedimen-sional“hyper-cube;”withascalededgelengthofunity.Givenaplusorminus10%tolerance(20%ortwotenths(0.2)ofthetotalrange)oneachdesignvariable,thefeasibledesignspaceasa“volume”fractionofthetotaldesignspacecanbeapprox-imatedas
ofthetotalde-signspace.Thisrealization(sometimescalledthecurseofdi-mensionality)tendstoexplaintheinitialfailureoffirst-orderorgradientbasedmethodsatfindingafeasibledesignspace.Theglobalapproximationinherentinthesub-problem[8]methodwasabletolocatetheverysmallfeasibledesignspace,whilethelocalapproximationnatureofthefirstorderoptimizationmethod[8]wasunabletofindasinglefeasibledesignvector.Havingfoundtheverylimitedfeasibledesignspaceandop-timaldesignvector,nofurther(significant)improvementcouldbemadebyeitherrepeatedsub-problemorfirstorderoptimiza-tioncalculations.
Fig.3.Optimizationhistory.
BrieflyreturningtotheoptimizationhistoryplotofFig.3,afewcommentsareinorder.Theinfeasibledesignsproducediniterations12through27areinfactverysimilardimensionallytothefinaloptimumdesign.Thesub-problemoptimizationtech-niquefundamentallyconvergedtoanearlyoptimumdesignatiteration12,(withonlyminorviolationsofthesideconstraints)andthefollowingiterationssimply“fine-tuned”theheatsinkdesignintotheoptimumconditionindicatedinTableII.Hadthesideconstraintsbeenrelaxedtoallowdeviationsorincreasesontheorderof15%overthespecifiedvaluesforheatsinkmass,coolantpressuredrop,andthermalresistance,convergencetoanoptimumdesignwouldhaveoccurredatanearlieriteration,oratamuchfasterrate.Fewerdesigniterationswouldberequired,withrelaxedsideconstraints,howeveronlyasimilaritytotheexactoptimumdesignofTableIIwouldhavebeenattained,not
theexactvalue.Secondly,thevariationof
showninFig.3isnotparticularlylargeduetotworeasons.First,thedesignvari-ablelimitsofTableIIwereestablishedaprioritooptimiza-tioncalculations,baseduponanticipatedmanufacturingcon-straintsandpreliminaryfeasibilitycalculations.Awiderrangeonthedesignvariableswouldgreatlyincreasethecalculated
values.Usingasnarrowarangeonthedesignvariablesaspracticaltendstoallowforamoreaccuratequadraticapprox-imationof
;asrequiredforsub-problemapproximation.Secondly,thefirstelevenrandomlygenerateddesignsplottedinFig.3,tendtoreflect“average”designs(ordesignpointsnearthemiddleofthedesignspace),sincetheprobabilityofallnine
designvariables(andtheirconsequent
outputs)beingran-domlyassignedtoextreme(highorlow)valuesisverylow,andconsequentlynotobservedinFig.3.Anadditionaltopicofin-terestisthesensitivityoftheobjectivefunctiontoperturbationsoftheinputvariables.
GiventheoptimumdesignoutlinedinTableIIabove,the
variationof
withthemajordesignvariables,abouttheop-timumdesignofTableII,isshowninFig.4.
InpreparingFig.4theentirerangeofeachdesignvariableisnormalizedtounity,duetothelargenumericalvariationintherangesoftheindividualdesignvariablesasindicatedinTableII.Eachdesignvariableisvariedindividually,andtheoptimizationmodelsubsequentlysolvedtocreatetheplotteddata.Aseachdesignvariable,ofFig.4,isincreasedinitsrange,theobjective
424IEEETRANSACTIONSONCOMPONENTSANDPACKAGINGTECHNOLOGIES,VOL.27,NO.2,JUNE2004
Fig.4.Variationinobjectivefunctionwithdesignvariablesattheoptimaldesignvector.
functionoroverallthermalresistanceclearlytendstodecreasewithincreasingdesignvariables.Thesalienttrendsorimpactofeachmajordesignvariable,attheoptimaldesignvector,isindicatedinFig.4withtheanticipatednonlinearityofoutput
asafunctionofinputvariablesbeingevident.
OnemightbetemptedtouseFig.4(orsimilarplots)foraheuristicdesignapproachinlieuoftheoptimizationrou-tinespreviouslydiscussed.SuchanapproachwouldquicklyencounterthelimitationsofFig.4whichincludethefactthatmanyofthedesignpointsinFig.4areinfactinfeasible
designs,andtheplottedvariationsin
are“centered”abouttheoptimaldesignvector.TheplottedcurvesofFig.4wouldmostcertainlyvaryinshape(andsignificance)if“centered”atotherregionsofthedesignspace.
Anotheralternativeapproachtothisdesignmethodologymightusethepopularfactorialdesigntechnique.Alinearfactorialdesign,forthisninevariableproblemwouldrequire
FEMmodelevaluations,orapproximatelyanorder
ofmagnitudemorecomputationthanthe29sub-problemitera-tionspreviouslycited;seeFig.3.Additionally,alinearfactorialwouldnotaccuratelyestimatethenonlinearresponsesindicatedinFig.4.Ifaquadraticfactorialmodel,wereusedforthisninevariableproblem,thenonlinearresponsescouldbeestimated,
however
FEMmodelevaluationswouldberequired,posinganimpracticalcomputationalburden.Partialfactorialexperimentaldesignswillbemorecomputationallyefficientatthe“expense”ofneglectingspecificvariableinteractions,whichcouldeasilycausesignificantdifficultiesindeterminingtheoptimaldesign.Finally,specializedresponsesurfaceexperimentaldesignmethodsmaybeappropriateal-ternativestothesub-problemmethodpresentedherein,butarecertainlylesswellknownoracceptedrelativetotheproposedsub-problemmethod.
Fig.5.Temperaturesolutionofoptimumdesign.
Giventhesecomplexities,theuseofdesignoptimizationalgorithms,suchasthesub-problemandfirstordermethod,closelycoupledwithfiniteelement(orothernumerical)models,areseenashighlyeffectivetoolstodetermineorcreateafeasibleoptimalelectronicheatsinkdesignmeetingtheappropriateproblemconstraints.
Fig.5showstheoveralltemperaturesolutionfortheoptimumheatsink.TheplottedtemperaturecontoursinFig.3spanthetotaltemperaturerangeofthisproblem;40Cambientto90Cchiptemperature.Theeffectofthesensibleheatgainofthecoolingairflowisapparentwiththefintemperaturecontoursvaryingbothparallelandtransversetotheairflowdirection.Theinletendoftheheatsinkiscoolerthantheexhaustoroutletend,asexpected,duetotheheatingofthecoolingairflow.
Thusfarwehavelimitedourdiscussiontotheoptimizationmodel,processanddirectresults.AnimportantinferencecanbemadebyexaminingFig.5,thetemperaturesolutionoftheoptimumdesign.Fig.5showshightemperaturesnearthechiplocation,withremoteportionsofthebaseandfinsoperatingatmuchlowertemperatures.Theseobservationsalsotendtore-inforcethenotionofhighheatdissipationnearthechiploca-tionwithfairlylowheatspreading,andconsequentlylessheattransferfromthefintips,andremotecornersofthebase.Whiletheoptimaldesignpresentedearlierisindeedthebestsetofin-putsordesignvector(tominimize
),withinthedesignvari-ableconstraintsandsideconstraints,Fig.5indicatesthepos-sibilityofstillmoreimprovement.Thispotentialshortcomingisdueinparttotheoptimizationdesignvariablespecificationsordecisionsherein,whichrequireuniformfinthickness,shape,spacing,anduniformaircoolantflowratesineachfinpassage.Shapingthefinlengths,varyingfinspacing,varyingthefinpro-file,andmorecomplexbasegeometriesareallalternativestoimprovethefinproposedheatsinkdesignoreffectiveness.In-deed,thesetopicswillbeexploredinsubsequentpapers.
IV.CONCLUSION
Theobjectiveofthispaperwastodevelopanddemonstrateacomputationallyefficientmethodologyforthecomputer
KRUEGERANDBAR-COHEN:OPTIMALNUMERICALDESIGNOFFORCEDCONVECTIONHEATSINKS425
aidednumericaldesignofelectronicheatsinks,withmultipleconstraints.SectionsIIandIIIaccomplishedthistaskbyuseofaFEMcoupledwithempiricalcorrelations,andoptimizationtechniques.Theproposedmethodologywasdemonstratedbysolutionofaheatsinkdesignchallengeproblem.Overallspeci-ficationcompliancewasdemonstratedbytheproposedoptimaldesign,aswellasasomewhatcomprehensiveheatsinkdesignmethodology,addressingthesimultaneousrequirementsforthermalperformance,maximummass,specifiedspaceclaim,andmaximumallowablecoolantpressuredropinapractical,computationallyefficientmanner.Thefinalcomment,ontheproposedmethodologyistherecognitionthatalthoughonlythe“challenge”problemsolutionisdemonstratedherein,othersimilardesignproblemscanalsobesolvedinasimilarmannerbythetechniquesoutlinedinthispaper.
REFERENCES
[1]A.Bar-Cohen,“Thermalpackagingforthe21stcentury:Challengesand
options,”inProc.5thTherminic—InternationalWorkshopThermalIn-vestigationsofIC’sandSystems,Rome,Italy,1999.
[2]M.AchourBenandA.Bar-Cohen,“Heatsinkoptimizationformax-imumperformanceandminimummass,”inProc.Interpak’99Conf.,Maui,HI,1999.
[3]D.KernandA.Kraus,ExtendedSurfaceHeatTransfer,1sted.New
York:McGraw-Hill,1972.
[4]M.A.ButterbaughandS.S.Kang,“Effectofbypassontheperformance
ofheatsinksinelectroniccooling,”ASMEProc.Adv.Electron.Packag.,vol.2,1990.
[5]S.Kakac,R.Shah,andW.Aung,HandbookofSinglePhaseConvective
HeatTransfer.NewYork:Wiley,1987.
[6]W.M.KaysandA.L.London,CompactHeatExchangers,3rd
ed.NewYork:McGrawHill,1965.
[7]R.K.ShahandA.L.London,LaminarFlowForcedConvectionin
Ducts.NewYork:Academic,1978.
[8]AnsysUsersManualVersion5.5,AnsysInc.,1998.
WilliamB.KruegerreceivedtheM.S.andPh.D.degreesinmechanicalengineeringfromtheUniver-sityofMinnesota,Minneapolis,in1997and2002,respectively.
Thefocusofhisgraduatestudieswasinheattransfer,numericalmethods,andoptimizationtechniques.Since1999,hehasbeenself-employedasanindependentconsultingengineerprovidingthermalandstructuraldesignandanalysisservicesforanumberofleadingcorporations.Priorto1999,hewasemployedinprimarilyintheproductdesign
anddevelopmentcapacitybymanyofhiscurrentconsultingclientele.Hisprofessionalinterestsincludecomputeraideddesign,designmethodologies,optimizationtechniques,andproductdevelopmentmethodologies.
AvramBar-Cohen(M’85–SM’87–F’93)receivedtheB.S.(withhonors),M.S.,andPh.D.degreesfromtheMassachusettsInstituteofTechnology,Cambridge,in1968and1971,respectively,allinmechanicalengineering.
HeisProfessorandChairofMechanicalEn-gineeringattheUniversityofMaryland,CollegePark,wherehecontinueshisresearchinthethermalmanagementofMicro/Nanosystems.HebeganhisprofessionalcareerattheRaytheonCompanyinMassachusettsin1968andforthepast35yearshas
beeninvolvedinthedesign,analysis,andoptimizationofthermalsystems,withemphasisonthethermalpackagingofelectronicequipment.Hehaslecturedwidely,publishedextensivelyinthearchivalheattransferandpackagingliterature,andtaughtmanyShortCoursesonthissubject,atuniversitiesandmajorconferencesintheU.S.andabroad.HeservedasGeneralManagerandExecutiveConsultantforpackagingandphysicalmodelingatControlDataCorporation,1984-19,heldasuccessionofacademicappointments,fromLecturertoProfessor,intheDepartmentofMechanicalEngineeringattheBenGurionUniversityoftheNegev(Israel),1973-1988,andwasonthefacultyattheMassachusettsInstituteofTechnology,1977-1978,andtheNavalPostgraduateSchool,1982.FiftygraduatestudentshavecompletedtheirM.S.andPh.D.degreesunderhisdirectionattheBenGurionUniversity,MIT,andtheUniversityofMinnesota,respectively.Heisco-author(withA.D.Kraus)ofDesignandAnalysisofHeatSinks(NewYork:Wiley,1995)andThermalAnalysisandControlofElectronicEquipment(NewYork:McGraw-Hill/Hemisphere,1983),andhasco-edited13booksinthisfieldincludingAdvancesinThermalModelingofElectronicComponentsandSys-tems(NewYork:ASMEPress)andThermalManagementofMicroelectronicandElectronicSystems(NewYork:Wiley).Hehasauthoredandco-authoredsome250journalpapers,refereedproceedingspapers,andchaptersinbooks,andhasdeliverednearly50Keynote,Plenary,andInvitedLecturesatmajortechnicalConferencesandInstitutions.Priortoacceptinghiscurrentposition,heservedastheDirectoroftheCenterfortheDevelopmentofTechnologicalLeadershipandheldtheSweattChairattheUniversityofMinnesota,whereheearlierservedasProfessorofMechanicalEngineeringandDirectoroftheThermodynamicsandHeatTransferDivision.HeservedastheASMEVicePresidentforResearch(1998-2001)andhadearlierservedonASME’sBoardofResearchandTechnologyDevelopment,aswellastheASMEBoardonProfessionalDevelopment,andwasinstrumentalinrevivingtheHTDK-16CommitteeonHeatTransferinElectronicComponentsintheearly1980s.HewasafoundingmemberandcurrentlyservesontheAdvisoryBoardofASME’sNanotechnologyInstituteandrepresentsASMEontheAssemblyforInternationalHeatTransferConferences(2002–2006).Hisinterestsincludethermaldesign,ebullientheattransfer,andthermalphenomenainmicroelec-tronic,photonic,andbiologicalsystems,aswellastechnologyforecastingandmanagementoftechnology.
Dr.Bar-Cohenreceivedthe2001IEEECPMTSocietyOutstandingSustainedTechnicalContributionsAward,the2000ASMEWorcesterReedWarnerMedalforoutstandingcontributionstotheliteratureintheareaofheattransfer,theASMEHeatTransferMemorialAward,theASMECurriculumInnovationAwardin1999,theASME/IEEEITHERMAchievementAwardin1998,theASMEEdwinF.ChurchMedalin1994,andtheTHERMIAwardfromtheIEEE/Semi-ThermConferencein1997.HeisaFellowofASME,theEditor-in-ChiefoftheIEEETRANSACTIONSONCOMPONENTSANDPACKAGINGTECHNOLOGIES,aDistinguishedLecturerforIEEEand,inthepast,forASME,wastheFoundingChairmanoftheITHERMConferencein1988,andservedastheGeneralChairmanforthefirstInternationalIntersocietyPackagingConference(InterPack)in1995.
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- huatuoyibo.cn 版权所有 湘ICP备2023022426号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务