三角形的特性的教案【篇1】
一、教学内容:
教科书第80、81页,练习十四第1、2、3题。
二、学习目标:
1.知识目标:通过动手操作和观察比较,使学生认识三角形,知道三角形的特性及三角形高和底的含义,会在三角形内画高。
2.能力目标:通过实验、使学生知道三角形的稳定性及其在生活中的应用,培养学生观察、操作的能力和应用数学知识解决实际问题的能力。
3.思想教育目标:体验数学与生活的联系,培养学生学习数学的兴趣。
三、教学重、难点:
通过动手操作和观察比较,使学生认识三角形,知道三角形的特性及三角形高和底的含义,会在三角形内画高。
四、教学准备:
师生分别准备木条(或硬纸条)钉成的三角形。
教学过程:
一、导入:
1、我们已经学过哪些平面图形?(长方形,正方形,梯形,平行四边形,三角形等)
2、这节课我们来研究三角形(板书)。
3、你能说出生活中哪些物体上有三角形吗?(学生反馈)师:老师也找到了很多,我们一起来看看。(课件演示)
4、师边放边讲解。这些图形都有三角形。
二、三角形的特性
1、师:三角形在我们的生活中有着那么多的广泛应用,那你知道它们有什么作用呢?(课件)
2、为什么这些部位要用三角形要用三角形,而不用其他图形的形状呢?让我们一起来做个实验吧。师出示学具,请你拉一拉,并思考,你发现了什么?(板书:稳定性)
3、篱笆图,哪个比较牢固,为什么?
4、椅子摇晃。有什么办法解决呢?师:你是运用什么知识解决这个问题的?
5、师:现在你知道我们的鸟巢体育馆为什么用那么多的钢管搭成了三角形?
6、师:生活中还有哪些地方也用到了三角形的特性呢?(汇报,交流,课件演示)师:三角形的这种特性在生活中应用这么广泛,我们在今后学习数学的时候,我们应该多想想,怎样把数学中的有关知识应用到实际生活中去。
三、操作感知,理解概念。
A.三角形的定义
1、师:你能在自己的练习纸上画一个三角形吗?试着画一画。选择几个不同的学生画在黑板上。(锐角三角形,直角三角形,钝角三角形)
2、师:同学们能够在生活中找到三角形,又能在纸上画出三角形,那你能不能用自己的话来说一说,什么样的图形叫做三角形呢?(独立思考,同桌说一说,汇报)
3、师:大家说了自己不同的想法。别着急,我们先来判断这些图形是三角形吗?(课件出示)
4、那要判断一个图形是不是三角形需要哪些条件?现在你能不能说说什么叫做三角形呢?科学家是这样下定义的。出示:由三条线段围成的图形叫做三角形。哪些词语很重要?线段围成什么意思呢?(每相邻两条线段的端点相连)
B、三角形的特点
师:在三角形中,有几条边?几个角?几个顶点呢?(汇报)
指黑板上其中一个三角形找边、角、顶点,并标出。在刚才你画的三角形上标出来。
C、三角形用字母表示
师:为了表达方便,我们通常可以用字母A、B、C、分别表示三角形的三个顶点,可以表示成三角形ABC。师示范。让学生给自己的三角形标上字母,起个名字。
D、认识三角形的底和高
课件出示:斜拉桥。
师:在这座斜拉桥上你看到了什么?
要想知道这座斜拉桥从桥面到顶端的高度你准备怎么测量?先想一想,四人小组讨论。
同学们都想到了从三角形的一个顶点到它的对边做一条垂线(示范)顶点和垂足之间的线段叫做三角形的高,这条对边叫做三角形的底。
师指黑板上锐角三角形,如果给他做高怎样画?
教师示范做高。
生在自己的三角形里做高。
师:什么叫对边?顶点B、C的对边是哪条呢?
在这个三角形中,你还能画出其他的高和底吗?指生上台画,其余自做。反馈。三角形有几条高?
那么在直角三角形,钝角三角形里你会做高吗?同桌交流,集体反馈
直角三角形的其中2条边刚好是2条直角边。钝角三角形延长对边。
四、总结
通过这节课,你对三角形又有什么了解?
三角形的特性的教案【篇2】
教学内容:书P80-81例一例二
教学目标:
1、使学生理解三角形的意义,掌握三角形的特征。
2、培养学生的观察能力,识图能力和归纳概括能力。
教学重点:
掌握三角形的特征和特性。
教学难点:
给三角形画高。
教学准备:小棒、纸片、三角板。
教学过程:
一、联系生活,了解三角形的特性。
1、什么地方看到过三角形?什么地方用到三角形?(电线杆、自行车、篮球架等)
2、(演示)拉木框,做三角形。
得出三角形的特征:三角形稳定性,三角形的三条边长度固定、形状、大小就不变。
例:椅子腿松动了,固定一个三角形铁架。
3、板书:三角形的认识。
二、画三角形
1、照做好的三角形画
2、画好了,同桌看一看。
3、老师请大家帮忙找三角形。指名分别说说为什么不是三角形。
生1:第一个不是三角形,因为有一条边弯曲了,不是线段。
生2:第二个不是三角形,它没有封闭起来。
生3:第三个不是三角形,它有四条线段,而且没有封闭起来。
生4:第四个不是三角形,虽然它有三条线段,但也没有封闭起来。
师:第五个是封闭的呀?
生5:第五个中间构成三角形,可是外面外面线段多余了,应该线段的端点和端点连起来,所以第五个也不是三角形。
师:是否封闭换成围成你们说怎么样?
生6:第六个是三角形。
结论:
由三条线段所围成的图形叫三角形。(每相邻两条线段的端点相连)
三、自学课本、小组讨论
1、了解三角形各个部分的名称。
同桌互相指一指,说一说自己所画三角形各部分的名称。
2、从三角形的一个顶点到它的对边做一条垂线。
顶点和垂足之间的线段叫做三角形的高,这条边叫做三角形的底。
3、画高注意:
①高的线段要用虚线表示。
②②垂足上做上直角符号。
四、练习:
1、书上第86页练习十四第一题和第二题。
2、反馈:第一题直接做在书上投影反馈。第二题指名说一说。
五、拓展练习:
投影出示:每人一张作业纸。
1、填空:
①三角形是由()条边,()个顶点,()个角组成。
②三角形具有稳定性。
③三角形有()条高。
2、判断
①由三条线段组成的图形是三角形。()
②三角形有三条高,三个底。()
③自行车车架运用了三角形的稳定性原理。()
六、总结:
通过本节课的学习,你对三角形又有哪些新的了解呢?
三角形的特性的教案【篇3】
一、说教材
(一)教材分析
《三角形的特性》是人教课标版小学数学第八册第五单元的内容,三角形是平面图形中最简单也是最基本的多边形,一切多边形都可以分割成若干个三角形,并借助三角形来推导有关的性质。因此,三角形的认识是学平面图形知识的起点,也为学平面几何、立体几何打下基础。
本节课是在学生已经学习了线段、角和直观认识了三角形的基础上进行教学的,所以本节课是三角形认识的第二阶段。
(二)教学目标
根据本节课在教材中的地位和作用,依据新课程标准的基本理念和学生的认知水平,我拟定了以下教学目标:
1、知识目标:理解三角形的定义,掌握三角形特征和特性,并会给三角形画高。
2、能力目标:学会通过观察、操作、分析和概括去获得的学习方法,体验数学与生活的联系,培养学生的观察、分析、操作的能力,进一步发展空间观念。
3、情感目标:在小组合作、探究与交流的过程中,增强学生创新意识和团结协助的精神。
(三)教学重点、难点
教学重点:理解三角形的定义,掌握三角形的特征。
教学难点:给三角形确定高和画高。
二、说教法、学法
1、说教法
本节课我根据“教师是组织者、引导者和合作者”这一理念,以学生参与活动为主线,创建新型的教学结构。先创设情境激发学生的学习兴趣,然后让学生自学课本,独立探索,再让学生操作实践,合作交流,从而达到概念的自主建构;在整个教学过程中充分体现了以学生为主体,教师为主导的教学思想,让学生在活动中感受数学之美。
2、说学法
根据本节课的教学目标和教法,我主要采用独立探索、合作交流、实践操作相结合的学习方法,让学生通过动脑、动口、动手来亲身经历“做数学”的过程,真正理解和掌握基本的数学知识和技能,获得广泛的数学活动经验,建立学习成就感和信心,使学生成为数学学习的主人。
三、说教学过程,设计意图
这节课的教学过程,我是本着新课标的精神,在整个教学流程设计上力求充分体现“以学生为主体”、“以学生发展为本”的教育理念,我将教学思路拟定为“创设情境、诱发兴趣——合作交流、探索新知——深化训练,拓展延伸——质疑反思,总结评价”,努力构建探索型的和谐课堂教学模式。
1、生活实际出发,引出课题。
教师拿出三角板,流动红旗,问学生是什么图形,然后让学生说出生活中有哪些三角形。教师说明数学与生活有密切的联系,我们用数学的眼光发现问题。根据学生的年龄特点和心理特征。从生活实际出发,引起学生的兴趣。
这样一来,既打通了数学与生活间的无形屏障,又引发学生强烈的兴奋感和亲切感,营造积极向上的学习氛围,让学生在欢松的心情投入到学习当中。问题的悬念,有利于提高学生的学习热情,使学生产生强烈的求知欲望。
2、合作交流,探索新知
A:三角形的定义
师:这里主要是回顾学生对三角形原有的认识,起到一个温故而知新的效果。同时,教师及时给予学生鼓励和表扬,这样也可以激发学生、提高学生的学习的积极性。
B:认识三角形的特征
先让学生自学书本第81页的内容,并画出三角形的各个部分的名称,再请学生小组合作交流,拿出并指着自己的三角板向同伴说出三角形各部分的名称。
C:三角形的高的画法
请学生自学书本第81页的内容,理解三角形的高和底的定义。并在此基础上调动学生已有的知识经验,先让学生在小组内合作探索尝试画高;然后,教师示范讲解三角形的高的画法;最后出示练习,让学生作出正确的判断。这是在学生已学会了画平行四边形的高的基础上进行教学的。通过自学并调动学生原有的经验去独立思考、去逐步探索,让学生在获取数学知识的过程中体验到成功的喜悦,感受数学的乐趣,增强学生学习数学的信心,并通过练习,使学生对高有一个整体的认识,从而突破这节课的重难点。
D:三角形的稳定性
利用做游戏来说明:三角形具有稳定性。
这里主要是利用游戏,引起孩子的兴趣,达到寓教于乐的目的。
3、深化训练,拓展延伸
生活中的三角形。
第一、做生活的小能手,老师的椅子总是摇晃不稳,谁能帮老师修理一下,怎样才能更坚固呢?
第二、围篱笆。“哪种方法更牢固,为什么?”
通过这些有序而多样的练习,既巩固了学生学过的知识,又进一步培养了学生理解、分析、推理的能力,有趣的数学在学生们的积极主动的探索中显得更有味道。
四、说板书设计
本节课的板书比较简洁,突出重点,体现本课时的内在联系,更进一步加深了学生对三角形的特征和特性的认识。
三角形的特性的教案【篇4】
教学目标:
1、在摆一摆、拉一拉的活动中,认识三角形的稳定性和四边形的易变性。了解三角形稳定性在生活中的应用。
2、在观察、操作、推理、归纳等探索过程中,进一步认识三角形稳定性和四边形的易变性,培养学生观察、操作和概括、抽象能力以及应用知识解决实际问题的能力和合情推理能力。
3、体会数学与现实生活的联系,提高学习数学的兴趣。
教学重点:
理解三角形具有稳定性。
教学难点:
正确理解三角形的稳定性。
教学关键:
要联系生活实际,在充分操作、交流的活动中,让学生感受三角性的唯一确定性,从而明确的指向三角形具有稳定性的本质。
教学过程:
同学们:这节课我们研究三角形的特性。
一、操作演示,观察发现。
(一)三角形的唯一性
1、我们用若干根长度相同的小棒摆三角形和四边形。摆一个三角形,再摆一个三角形,再摆一个三角形;摆一个四边形,再摆一个四边形,再摆一个四边形。同学们认真观察我们摆出的三角形,你有什么发现?(我们猜这些三角形的形状、大小可能相同)那我们的猜测到底对不对?就需要我们进行验证。我们可以把摆出的三角形移动,发现它们能完全重合,也就是无论怎么摆,摆出的三角形的形状、大小都完全相同。这是为什么呢?这是因为:角度确定形状,边长确定大小。
2、我们把摆出的四边形移动,发现它们不能重合,也就是摆出的四边形的形状、大小都不相同。这又是为什么?这是因为:角度发生了改变,形状会随之发生改变。
3、看来只要三角形三条边的长度确定了,这个三角形的形状和大小也就完全确定了。
(二)三角形的稳定性
我们用手拉三角形,使劲拉也拉不动,我们用手拉四边形,四边形一拉就变形了。这是为什么?这是因为:三角形三条边的长度已经确定下来,这个三角形的形状和大小也就会完全确定了,不会再发生变化。而四边形由于角度会发生改变,所以四边形的形状和大小都会随之改变。因此我们说三角形具有稳定性,而四边形具有易变性。
二、实践应用,拓展延伸
生活中,我们在许多地方都见到过三角形和四边形。比如自行车的车架是三角形,篮球架的框架是三角形,伸缩门的框架是四边形。人们把自行车的车架、篮球架框架等做成三角形就是运用了三角形的稳定性。而把伸缩门的框架做成四边形是运用了四边形的易变性。
三、反思总结,自我建构
这节课我们通过用长度相同的若干根小棒摆三角形和四边形,发现,三角形三条边的长度只要确定下来,这个三角形的形状和大小也就会完全确定了,不会再发生变化。而四边形由于角度会发生改变,所以四边形的形状和大小都会随之改变,因此,三角形具有稳定性,而四边形具有易变性。
这节课我们就研究到这儿,同学们,再见!
三角形的特性的教案【篇5】
教学目标:
1.通过动手操作和观察比较,使学生认识三角形,知道三角形的特性及三角形高和底的含义,会在三角形内画高。
2.通过实验,使学生知道三角形的稳定性及其在生活中的应用。
3.培养学生观察、操作的能力和应用数学知识解决实际问题的能力。
4.体验数学与生活的联系,培养学生学习数学的兴趣。
教具准备:师准备木条(或硬纸条)钉成的三角形、学习卡
教学过程:
一、联系生活,情境导入
1、谈话导入,板书课题。
2、课件展示课本第80页情境图,让学生指出图上的三角形。
3、让学生讨论说一说:生活中还有哪些物体上有三角形。
二、实验解疑,探索特性
1、三角形在生活中有这么广泛的运用,究竟它有什么特点?下面我们来变个小魔术。
2、生上台前拉教具:拉一拉,你有什么发现?
3、实验结果:三角形具有稳定性。
4、请学生举出生活中应用三角形稳定性的例子。(如:自行车三角架、交通警示牌等)
5、出示教材第81页插图:图中哪儿有三角形?它具有什么作用?
三、操作感知,理解概念
1、4人为小组画三角形,理解含义。
2、展示学生画的三角形,组织交流:三角形有什么特点?
3、生板演完成习题:三角形有()条边,()个角,()个顶点。(生齐读)
4、概括定义:大家对三角形的特征有了一定的认识,能不能用自己的话说一说什么样的图形叫三角形?(指名说)
5、辨一辨:(出示幻灯片)它是三角形吗?说说你的理由。
6、师小结:由三条线段围成的图形叫三角形。
四、画三角形的底和高。
1、出示图形:看这是老师课前画的三角形,大家仔细观察老师画的与你们画的有什么不同。
2、生观察指出,师引导出高和底的概念,以及三角形的字母表示形式。
3、学生分组讨论练习画三角形的高。
4、展示学生作品:说说你是如何画的。
5、幻灯片演示画高过程。
6、学生板演画高。
五、总结
1、师:通过这节课的学习,我们懂得了三角形具有——稳定性,还知道了怎样画三角形的——高。
2、巩固练习。(课件演示学生修椅子:说说为什么要这样修?)
三角形的特性的教案【篇6】
教具、学具准备:师生分别准备木条(或硬纸条)钉成的三角形。
教学过程:
一、联系生活,情境导入
1.展示课本第80页情境图:我们的城市日新月异,每天都有新的变化。
瞧,这是正在建设中的会展中心,不久的将来就会落成,成为我们城市新的标志性建筑。你在建筑框架上、吊车上发现三角形了吗?请你描出几个三角形。
2.让学生说一说:生活中还有哪些物体上有三角形。
3.出示一些生活中常见的物体上的三角形:电视接收塔上的三角形、铁桥上的三角形、交通标志牌上的三角形、晾衣架上的三角形等。
4.导入课题:三角形在生活中有这么广泛的运用,究竟它有什么特点?这节课我们将对它进行深入的研究。(板书课题)
二、操作感知,理解概念
1.发现三角形的特征。
请你画出一个三角形。边画边想:三角形有几条边?几个角?几个顶点?
展示学生画的三角形,组织交流:三角形有什么特点?
让学生在自己画的三角形上尝试标出边、角、顶点。
反馈,教师根据学生的汇报板书,标出三角形各部分的名称。
2.概括三角形的定义。
引导:大家对三角形的特征达成了一致的看法。能不能用自己的话概括一下,什么样的图形叫三角形?
学生的回答可能有下面几种情况:
(1)有三条边的图形叫三角形或有三个角的图形叫三角形;
(2)有三条边、三个角的图形叫三角形;
(3)有三条边、三个角、三个顶点的图形叫三角形;
(4)由三条边组成的图形叫三角形;
(5)由三条线段围成的图形叫三角形。
请学生对照上面的说法,议一议:下面的图形是不是三角形?
讨论:哪种说法更准确?
阅读课本:课本是怎样概括三角形的定义的?你认为三角形的定义中哪些词最重要?
组织学生在讨论中理解三条线段围成。
3.认识三角形的底和高。
出示练习纸:三角形屋顶的房子和斜拉桥。
你能测量出三角形房顶和斜拉桥的高度吗?
学生在练习纸上操作。反馈:你是怎么测量的?
指出:从三角形的一个顶点到它的对边做一条垂线,顶点和垂足之间的线段叫做三角形的高,这条对边叫做三角形的底。
出示教材第81页上的三角形。提问:这是三角形的一组底和高吗?在这个三角形中,你还能画出其他的底和高吗?
学生操作,然后评议交流。
三、实验解疑,探索特性
1.提出问题。
出示教材第81页插图:图中哪儿有三角形?生产、生活中为什么要把这些部分做成三角形的,它具有什么特性?
2.实验解疑。
下面,请大家都来做一个实验。
学生拿出预先做好的三角形、四边形学具,分小组实验:拉一拉学具,有什么发现?
实验结果:三角形具有稳定性。
请学生举出生活中应用三角形稳定性的例子。
四、巩固运用,提高认识
指导学生完成练习十四1、2、3题。
五、总结评价,质疑问难
这节课我们学习了什么?你对三角形有了哪些进一步的认识?还有什么有关三角形的问题?
教学目标:
1.通过动手操作和观察比较,使学生认识三角形,知道三角形的特性及三角形高和底的含义,会在三角形内画高。
2.通过实验,使学生知道三角形的稳定性及其在生活中的应用。
3.培养学生观察、操作的能力和应用数学知识解决实际问题的能力。
4.体验数学与生活的联系,培养学生学习数学的兴趣。
三角形的特性的教案【篇7】
教学内容:
教材第62页的内容及第66页练习十五的第68题。
教学目标:
1、知道两点间距离的意义,明白两点之间线段最短的道理。
2、通过操作、观察,发现三角形三边之间的关系:三角形任意两边之和大于第三边。
3、掌握判断三条线段是否构成一个三角形的方法,并能解决有关的问题。
4、提高学生逻辑思维能力,以及培养学生猜想验证总结的学习习惯。
教学重点:
知道两点间距离的意义,明白两点之间线段最短的道理。
教学难点:
通过操作、观察,发现三角形三边之间的关系:三角形任意两边之和大于第三边。
教具学具:
多媒体课件、剪刀、白纸。
教学过程:
一、情境导入
课件出示教材第62页例3.
师:老师给大家介绍一位新朋友小明。他正从家里出发去学校。观察情景图说一说,从小明家到学校有几条路线?分别是怎么走的?
生:从小明家到学校有3条路可走。
第一条:家邮局学校第二条:家学校
第三条:家商店学校
师:哪条路最近?
生:家学校的路最近。
师:为什么家学校的路最近?
二、自主探究
1、体验两点间的距离的意义。
师:为什么大家认为中间这条路最近?
生1:因为第一条和第三条路线拐弯了,绕远路,所以中间这条最近。
生2:我生活中这样走过,中间的这条路线最短。
生3:我在课本的图中通过测量得出中间的这条路线最近。
师:家、邮局、学校,我们可以看作三个点,你能发现它们构成了一个什么图形吗?
生:观察情境图我们可以发现家邮局学校可以看成一个三角形,其中家到邮局的距离+邮局到学校的距离>家到学校的距离。
师:家商店学校呢?
生:家商店学校也可以看成一个三角形,家到商店的距离+商店到学校的距离>家到学校的距离。
师:通过上面的观察,你能得出什么结论?
三角形的特性的教案【篇8】
教学目标:
1、通过学习使学生认识三角形,知道三角形各部分的名称,能用字母表示三角形;理解三角形底和高的对应关系,会在三角形内画高,初步了解三角形的外高。
2、在找一找、画一画、说一说的过程中感知三角形的定义,理解“围成”的含意;在画高的过程中感受三角形底与高的相互依存的关系。
3、通过教学培养学生的观察能力、作图能力,数学语言表达能力。积累在三角形内画高等数学活动经验。
4、培养学生乐于思考,勇于质疑的良好品质。养成用数学的眼光观察生活的习惯。体验数学与生活的密切联系,培养学习数学的兴趣。培养学生的空间观念。
教学重点:
理解三角形的概念、会画指定底边的高。
教学难点:
能准确画出指定底边的高。
教具、学具:
教师准备:课件一套,三角尺一个。学生准备:三角板,铅笔,白纸。
教学过程:
一、看图导入、揭示概念
1、初步感知。
猜今天学什么?提示:一种平面图形!你猜可能是什么?是呀,这么多的平面图形我们到底要研究哪一个呢?仔细观察下面两副图,也许能找到答案。
课件出示古金字塔和安康汉江三桥画面。
现在能确定今天要学什么了吗?从古到今三角形在我们的生活中都有着广泛的应用,它是人类智慧的象征。今天我们将一起来认识三角形。板书课题
2、画图理解概念。
三角形是什么样的?能把你记忆中的三角形画出来吗?
在白纸上画一个三角形。画好以后跟同桌或小组里的同学说一说你是怎么画的?开始吧!
说说看,你是怎么画的?还有不同的画法吗?(根据学生汇报的画图方法,老师在黑板上画两个三角形。)(相机板书“三条线段”等)
3、尝试概括定义。
什么样的图形叫三角形?通过课件画图对比分析学生的概括结果,引导学生逐步完善。(理解每相邻两条线段的端点相连)
出示定义:完善板书。
二、认识各部分名称
1、引导观察并讲述:(课件出示)围成三角形的这三条线段就是这个三角形的边,每相邻两边相连的端点叫做顶点,由一个顶点出发的两条边所组成的图形就是角。三角形有几条边,几个顶点,几个角?
练习:找个同学上来指一指黑板上这个三角形各部分的名称。
2、用字母表示。
老师说“那个顶点”让学生上黑板指,学生指哪个都摇头。
师:为什么现在他指不对了呢?(因为有三个顶点,不知道说的是哪个。)
师:为了更好的区分它们,我们可以用字母A,B,C分别表示这三个顶点。这个顶点就读作“顶点A”读,(指B,C)这个是?这样一来这条边就叫AB边。(指另外两条)。这个角就是——角A。
师:整个三角形就可以叫做——三角形ABC。真会类推!快动手把你的三角形也用字母表示出来。
练习并过渡:(课件出示同底不等高的三角形)现在会用字母表示三角形了吗?
师:这是个三角形家族,如果用ABC表示这个蓝色的三角形的话,这个绿色的三角形可以表示为AB——D。这个红色的就是——三角形ABE。
《三角形的特性》教学设计岚皋县城关小学王晓君
3、认识高。
观察这些三角形,你有什么发现?(一个比一个高,一个比一个大)
生1:我发现这些三角形下面的两个顶点不变,上面的顶点分别就变的名称。
师:你的意思是说它们下面这条边长度相等,是这个意思吗?可这些三角形确一个比一个高,一个比一个大。为什么会这样呢?
师:看样子三角形也是有高的,而且这个高还影响着三角形的大小。
师:如果三角形有高的话,那这个高应该在哪儿呢?(停顿一下出示课件)
看看哪幅图画出了你心目中的高?你凭什么说第二幅图是,其它不是?
《三角形的特性》教学设计岚皋县城关小学王晓君
在今天之前,我们还学习过哪些图形的高?
什么叫平行四边形的高?有人记得吗?我们一起来回忆一下。(课件出示平行四边形的高)
独立思考后小组交流:1、三角形的这一点在哪儿?它的对边在哪儿?2、三角形的`高应该是一条怎样的线段?3、底在哪儿?底和高有什么关系?
汇报学生的理解与概括。
请打开课本60页,读高的定义。
4、理解三角形的高和底的对应关系。
课件演示画高,强调这点的对边在哪
思考三角形有几条高?课件演示(颜色区分)
5、指导画高。
谁想上来试试画画三角形ABC的高。说一说你想画哪条边上的高?(指名一生上黑板,指导画高)三角板这样摆放对吗?
指名一人上黑板画指定底边的高(斜边)。
同学们,现在会画高了吗?
三、课后练习
1、基础练习:60页“做一做”。画出指定底边的高。(准备打开展台)
展示汇报:在学生的作业展示中理解直角三角形两条直角边互为底和高
2、拓展练习:初步了解钝角三角形的形外高。
《三角形的特性》教学设计岚皋县城关小学王晓君
数一数图中共有几个三角形?
课件演示过A点做BC边的垂线AE。观察你觉得AE是哪些三角形哪条边上的高?了解钝角三角形的形外高。
3、用直尺画高。
四、进行一次想像
课前老师也在生活中发现了一个三角形,想知道是什么吗?大家说是直接出示图片还是给一些线索大家来猜一猜?课件出示:高30厘米,底40厘米。这个三角形可能是什么?先把你的想法与同桌比划比划。
三角形的特性的教案【篇9】
教学内容:
人教版四年级数学下册第五单元三角形P80、81页例1、例2,练习十四1、2、3题。
教材分析:
《三角形的特性》是人教版义务教育课程标准实验教科书四年级数学下册第80--81页的内容。学生通过第一学段以及四年级上册对空间与图形的学习,对三角形已经有了直观的认识,能够从平面图形中分辨出三角形。本节内容的设计是在上述的基础上进行的,教材的编写注意从学生已有的经验出发,创设丰富多彩的与现实生活联系紧密的情境和动手实验活动,以帮助学生理解三角形概念,构建数学知识。
学生分析:
学生在日常生活中经常接触到三角形,对三角形有一定的感性认识,但几何初步知识无论是线、面、体的特征还是图形的特征、特性,对于小学生来说,都比较抽象。要解决数学的抽象性与小学生思维特点之间的矛盾,就要充分运用其直观性进行教学。
设计理念:
学生对几何图形的认识是通过操作、实践而获得的。因此本节课从学生已有的生活经验出发,创设教学情境,让学生动手操作,自主探究、合作交流掌握三角形概念以及特性。
教学目标:
1、通过动手操作和观察比较,使学生认识三角形,知道三角形的特征及三角形高和底的含义,会在三角形内画高。
2、通过实验,使学生知道三角形的稳定性及其在生活中的应用。
3、培养学生观察、操作的能力和应用数学知识解决实际问题的能力。
4、体会数学与生活的联系,培养学生学习数学的兴趣。
教学重点、难点:
重点:理解三角形的含义,掌握三角形的特征、特性。
难点:三角形高的确定及画法。
教具、学具准备:
教师准备:多媒体课件,硬纸条制作的长方形和三角形,三角板,作业纸等。
学生准备:学具小棒、彩色笔、三角板,直尺等。
教学过程:
一、联系生活,情境导入
1、播放视频短片。
师:为了上好今天这节课,老师特意拍了一小段视频,考考你们,看你们能否发现短片中你比较熟悉的图形?(课件播放视频:三角形的木梯、空调外机的支架和电视塔)
学生自由汇报。
师:老师很高兴你们都有一双智慧的眼睛。
2、学生举例说生活中的三角形。
师:你还能说出生活中哪些物体上有三角形吗?
生:红领巾、房梁、自行车、 交通标志牌、电视接收塔、高压线塔……
3、从你们的回答中老师感受到你们都是善于观察、善于发现的好孩子!看来生活当中的三角形还真不少啊!这节课你想研究三角形的什么知识?
根据学生的汇报,相机揭示课题并板书:三角形的特性、定义、特点等。
二、操作感知,理解概念
1、发现三角形的特点。
师:用你喜欢的颜色在作业纸上画一个三角形。边画边想:三角形是由哪些部分组成的?
展示学生画的三角形,组织小组交流:和小组内的同学交流一下,你们画的三角形有什么共同的特点?
反馈,根据学生的汇报出示课件标出三角形各部分的名称。(板书:三条边、三个角、三个顶点)
2、概括三角形的定义。
师:看来大家对三角形的特点达成了一致的看法。能不能用自己的话概括一下,什么样的图形叫三角形?
学生的回答可能有下面几种情况:
(1)有三条边的图形叫三角形或有三个角的图形叫三角形;
(2)有三条边、三个角的图形叫三角形;
(3)有三条边、三个角、三个顶点的图形叫三角形;
(4)由三条边组成的图形叫三角形;
(5)由三条线段围成的图形叫三角形。
师:请你们对照上面的说法,判断下面的哪个图形是三角形?
课件出示一组图形:
讨论:哪种说法更准确?
阅读课本:课本是怎样概括三角形的定义的?(根据学生汇报板书:由三条线段围成的图形叫做三角形。)你认为三角形的定义中哪些词最重要?
组织学生在讨论中理解“三条线段”“围成”(边画三角形边强调“每相邻两条线段的端点相连接”。)
学生看着书齐读三角形的定义。
师小结:数学是一门严谨的学科,我们在用数学语言表达的时候也要讲求其严谨性。
3、探究三角形的特性。
(1)联系生活,了解三角形的特性。
师:细心观察,我们就会发现生活中有许多地方都会用到三角形的知识。
课件出示练习十四第2题“围篱笆”图。
师:瞧!小兔和小猴分别在各自的菜地边围上篱笆,小兔围成的是长方形,小猴围成了三角形。
请同学们想想哪种围法更牢固?为什么?下面我们来做个实验。
(2)动手操作,发现三角形的特性。
师拿出长方形框架。
师:谁想来拉一拉这个长方形的框架,你有什么发现?(容易变形,不稳定。)
课件演示:如果我们在小兔的篱笆上轻轻一推,会出现什么情况?(篱笆会倒下去。)
指导学生操作:去掉一条边,再扣上拼组成三角形框架。
师:再拉一拉有什么感觉?
请一名学生上前演示。
师:其他同学也想体验一下吗?(学生兴趣高涨,想要动手试试。)拿出你们的学具小棒和小组内的同学一起动手感受一下。
师小结:通过实验发现三角形不易变形,可见三角形具有稳定性。(板书:稳定性。)
点击课件,小猴的篱笆上有个红色的三角形在闪烁。
师:现在你能说说为什么小猴的篱笆更牢固了吗?
生:因为小猴的篱笆是三角形的,所以更牢固。
师:你知道生活中还有哪些地方用到了三角形稳定性的特征吗?
生:自行车、篮球架、电线杆……
小结:(点击课件,物体中红色的三角形在闪烁)生活中常见的自行车、篮球架、电线杆等物体之所以制成三角形,其中一个重要原因是利用了三角形的稳定性,使其结实耐用。
(3)运用三角形的特性解决生活中的实际问题。
课件出示练习十四第3题图片。
师:了解了三角形具有稳定性这一特性,我们可以用这个知识来解决生活中的难题。看,这是一把旧椅子,摇晃得很厉害。扔掉可惜,该怎样加固它呢?
指名学生上台演示具体怎样做。
追问:为什么要在椅子的两条腿上斜斜地钉上一根木条?这样做运用了什么知识?
生汇报后师小结:这样做是应用了三角形的“稳定性”。同学们能够学以致用,真了不起!
4、认识三角形的底和高。
(1)初步感知三角形的高。
课件出示松鼠和斑马的“别墅”。
师:聪明的松鼠和斑马也利用了三角形的这一特性各给自己做了套漂亮的别墅。你知道哪个是松鼠的'家?哪个是斑马的家吗?你是怎么想的?
生:高的别墅是斑马的,矮的别墅是松鼠的。
师:你说的房子的“高”指的是哪部分?请上来指一指。(学生上台比划三角形的高。)
师:(出示课件)老师这里有三幅图,那幅图把你心目中的高画下来了?
生:第(1)幅。
师:第二幅为什么不是?(第二幅是斜的,高应该是垂直线段。)
师:那第三幅是垂直的呀?为什么也不是呢?(没有经过顶点)
(2)理解三角形高的概念。
师:那你能说说什么是三角形的高吗?
结合学生的描述板书揭示三角形高的定义。
师边揭示三角形高的定义边出示课件演示三角形高的画法。
板书:顶点、(画高,标直角符号)高、底。
(3)动手画三角形的高。
在你画的三角形上确定一个顶点,再画出它的对边上的高。(学生动手画高。)
师:谁来说说你是怎么画的?(指名学生上台演示,结合学生的汇报出示课件演示)
强调:其实画三角形的高就是我们上学期学过的过直线外一点画已知直线的垂线。要注意的是代表高的这条线段要画成虚线段,别忘了标上直角符号。
师:为了方便表达,我们习惯用连续的三个字母A、B、C分别表示三角形的三个顶点,(板书:给三角形标三个顶点标上A、B、C)上面的三角形就可以表示成三角形ABC。那么和A点相对应的底是哪条边?(BC)(课件同步演示)你们也可以用自己喜欢的字母来表示你画的三角形,在你的三角形中,你将哪个点定为顶点的?和它相对应的底是哪条边?(学生汇报)
师:想一想,从三角形的一个顶点到它的对边可以画一条高,三角形有几个顶点?(3个)那也就是说一个三角形有几条高?(板书:三条高)
刚才我们是从顶点A到和它相对应的底BC画出了三角形的一条高,现在我们将AC作为三角形的底来画一条高,你能找到AC这条底所对应的顶点吗?(B点)对,找到底边所对应的顶点,我们就可以用同样的方法画出已知底边上的高了。
请你们在作业纸上画出每个三角形指定底边上的高。(练习十四第1题)
学生画完后汇报的同时,师点击课件演示。强调直角三角形的两条直角边中当其中一条作为底边时,另一条就是高。
(4)拓展画钝角三角形外的两条高。
学生试着画高,汇报的同时课件辅助演示画高的过程。
三、课堂小结
通过这节课的学习,你对三角形又有了哪些新的认识?
三角形的特性的教案【篇10】
一、说教材
新课标把三角形的内角和作为第二学段中三角形的一个重要组成部分。本课是安排在三角形的特性及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。教材所呈现的内容,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,安排了量一量、算一算和剪一剪、拼一拼两个实验操作活动,意图使学生在动手操作、合作交流中发现并形成结论。
二、说学情
1、通过前面的学习,学生已经掌握了三角形的一些基础知识,会用工具量角、画角,具备了探索三角形内角和的知识与技能基础。
2、学生的生活经验是可利用的教学资源。我在课前了解到,已经有不少学生知道了三角形内角和是180度,,但却不知道怎样才能得出这个结论,因此学生在这节课上的主要目标是验证三角形的内角和是180度。
三、说教学目标
基于以上对教材的分析以及对学生情况的思考,我从知识与技能,过程与方法,情感态度价值观三方面拟定了本节课的教学目标:
1、通过量一量,算一算,拼一拼,折一折的方法,让学生推理归纳出三角形内角和是180°,并能应用这一知识解决一些简单问题。
2、通过把三角形的内角和转化为平角进行探究实验,渗透转化的数学思想。
3、通过数学活动使学生获得成功的体验,增强自信心,培养学生的创新意识,探索精神和实践能力。
教学重难点:理解并掌握三角形的内角和是180度这一结论。
四、说教学准备
教具:多媒体课件,
学具:各类三角形、长方形、量角器、活动记录表等。
五、说教法
“三角形的内角和”一课,知识与技能目标并不难,但我认为本节课更重要的是通过自主探索与合作交流使学生经历知识的形成过程,领悟转化思想在解决问题中的应用,以及在探索过程中,培养学生实事求是、敢于质疑的科学态度,同时,在不同方法的交流中,开拓思维、提升能力。基于以上理念,本节课,我准备引导学生采用自主探究、动手操作、猜想验证、合作交流的学习方法,并在教学过程中谈话激疑,引导探究;组织讨论,适时地启发帮助。使教法和学法和谐统一在“以学生的发展为本”这一教育目标之中。
六、说过程
本节课,我遵循“学生主动和教师指导相统一,问题主线和活动主轴相统一”的原则,制定了以下教学程序:
(一)创设情境,激发兴趣
兴趣是最好的老师。开课伊始我利用课件动态演示一只蝴蝶在把一条绳子围成不同的三角形。让学生观察在围的过程中,什么变了?什么没变?让学生在变与不变的观察与对比中,激发学生的学习兴趣,引出本节课的学习内容(板书:三角形的内角和),为后面的探索奠定基础。
设计意图:以问题情境为出发点,既丰富了学生的感官认识,又激发了学生的学习热情。
(二)动手操作,探索新知
本环节是学生获取知识、提高能力的一个重要过程。我有目的、有意识的引导学生主动参与实践活动、经历知识的形成过程。
1、揭示“内角”和“内角和”的概念
明确“内角”和“内角和”的概念是学生进一步探究内角和度数的前提,本环节首先请学生都拿出一个三角形,指一指三个内角,然后让学生谈谈自己对内角和的理解,在大家交流的基础上得出:三角形的内角和就是三个内角的度数之和。
2、猜测内角和
牛顿曾说:“没有大胆的猜想,就没有伟大的发现!”所以我放手让学生猜测三角形内角和的度数,由于绝大多数学生有课外知识的积累,不难说出三角形的内角和是180度,但猜想并不等于结论,三角形的内角和到底是不是180度?(板书:?)还要进一步的验证。猜想——验证是学生探究数学的有效途径。
3、动手验证,汇报交流
(1)介绍学具筐
由教师介绍学具筐中都有什么学习材料。
(2)生独立思考、动手操作
因为合作交流应建立在独立思考的基础上,所以先让学生独立思考:打算选用什么材料,怎样来验证三角形的内角和是不是180°。然后再让学生把想法付诸实践。此环节会留给学生充分的思考、操作、发现的时间,让学生在探索中找到证明的切入点,体验成功。在这期间,教师走下讲台,参与学生的活动,与学生一起寻找验证的方法,对有困难的学生提供帮助,不放弃任何一个学生。
(3)组内交流
经过独立思考和动手操作,每人都有了自己的验证方法,先在小组内交流各自的验证方法。
(4)全班汇报交流。
在足够的交流之后,开始进入全班汇报展示过程,达到智慧共享的目的。
三角形的特性的教案【篇11】
一、说教材
《认识三角形》是苏教版四年级下册上的内容,在此之前,学生已经学习了角,初步认识了三角形,但对三角形的三边关系未曾探索,本课将引导学生探究三角形的三边关系,理解任意二边之和大于第三边。教材给我们提供2个例子,例题1提供场景图让学生观察,并找出其中的三角形;再联系日常生活说说还在哪里看到三角形。通过找和说唤起学生对三角形初步认识的回忆,从整体上初步感知三角形。例题2让学生任意选三根小棒围一个三角形,在此活动基础上我增加了让学生找出第三边的长度范围,这样使学生知道三角形第三边的长度是有一定范围的,更容易发现三角形任意两边之和大于第三边。最后教材还安排"想想做做",让学生及时巩固所学的知识。所以学好这部分内容,不仅可以从形的方面加深对周围事物的理解,发展学生的空间观念,可以在动手操作、探索规律等方面发展学生的思维和解决实际问题的能力,同时也为学习其他平面图形和立体图形积累知识经验。
三角形的特性的教案【篇12】
一、引入谈话
师:孩子们,春天到来了,阳光明媚,春暖花开,如果能到郊外去玩玩儿,那该多好啊,瞧,一群孩子已经来到了公园门口?仔细看看,这幅图上有那些图中哪些物体形状是三角形的?
师:我们生活中还有哪些物体是三角形的?
师:既然生活中有这么多三角形。那我们就一起来研究有趣的三角形。(板书课题:认识三角形)
二、操作感知三角形的特征
1、感知生活中的三角形并找出三角形的特征
师:三角形是我们的朋友,它为我们日常生活、建筑业等方面作出了很大贡献。看,这些实物图和标志牌上都有三角形,(课件出示例1的图的三角形),请仔细观察,思考这些三角形有什么的共同特征。 再说说什么样的图形叫做三角形形(让学生充分观察,自己总结出特征)归纳:三角形有三条边,三个顶点,三个角。对照图形,谁能用自己的语言来说说看,什么样的图形叫做三角形呢?引导学生得出:由三条线段围成的图形叫做三角形。(板书)
2、画三角形并理解三角形的特点
师:请在练习本上画一个你喜欢的三角形,画好后,和你的同桌说说三角形各部分的名称。
3、辨一辨并得出判断三角形的条件
师:我们来看看这些小朋友画的三角形,画得怎样?
师小结:判断一个图形是不是三角形首先要看是不是有三条线段,其次看这三条线段是不是围拢了。
(2)操作:第53页课堂活动第1,2题,按要求在本子上画出三角形,并相互检查。
(3)判断哪些图形是三角形?练习十第1题
三、感知三角形的特性
(1)师:生活中我们看到了很多物体的形状都是三角形的,如:电线杆架、房架等等。为什么要设计为三角形而不设计为其它的图形呢?还有我们来看小兔家和小狗家的篱笆,谁的更好呢?
请大家猜一猜三角形到底有什么特性呢?我们来做个实验吧。
(2)师:这是同样的木条,用同样的方法,做成的四边形和三角形,请两个小朋友上来拉一拉,你有什么发现?
生:四边形轻轻一拉,形状和大小都变了,而三角形用力拉后,发现形状和大小都不变。
(3)师小结:说明三角形比较牢固,具有较好的稳定性。
(4)举出生活中哪些物品用到三角形的这个特性吗?
(5)师:了解了三角形的稳定性,我想请孩子们来帮帮我。师演示可摇晃的长方形,请小朋友想一想怎样才能把这个四边形固定下来呢?
四、巩固练习
1.练习第54页第4题。
五、课堂总结
教师:通过这节课的学习,你对三角形有哪些新的认识?
三角形的特性的教案【篇13】
教学内容:
课本第80页至第81页例1例2,课本第81页“做一做”1、2题。
教学目标:
知识与技能
1、在观察、操作活动中感受并发现三角形是由三条线段围成的图形,认识三角形的各部分名称及三角形的字母表示法,知道什么是三角形的底和高。
2、在观察、实验中发现三角形具有稳定性,知道三角形的稳定性在实践中有广泛的应用。
3、积累认识图形的经验和方法。
过程与方法
主要通过观察法和动手实践法进行教学
情感态度与价值观
在学习活动中,进一步产生对数学的好奇心,锻炼动手能力,增强创新意识。
教学重点:建立三角形的概念,认识三角形的各部分名称,知道三角的底和高。在观察实验中发现三角形具有稳定性。
教学难点:会画三角形指定底边上的高。
教学具准备:课前用木条钉成一个三角形和一个四边形,用纸剪一个三角形。
教学过程:
一、创设情境、生成问题
从图中,你能找出哪些学过的图形?(教师课件出示)
当学生回答能找到三角形时,闪动图中一个三角形的边,让学生感知三角形在日常生活中的广泛应用。
想一想,你还能说出哪些物体上有三角形吗?
让学生举例说明后,教师可以再举一些例子,为学生进一步认识三角形的特性积累感性材料。
刚才同学们提出了许多有价值的数学问题,下面我们就来重点探索什么是三角形,认识三角形各部分名称及三角形的特征,探索三角形有什么特征。
二、探索交流、解决问题
1、教学例1。
出示例1:画一个三角形。说一说三角形有几条边?几个角?几个顶点?
(1) 学生独立操作。在自己的练习本上画一个三角形。
(2) 小组交流。学生画出三角形后,针对例题中提出的问题在小组内交流想法。
(3) 全班交流。指名回答例题中提出的问题,通过交流,引导学生认知由三条线段围成的图形(每相邻两条线段的端点相连)叫做三角形。
(4) 介绍三角形的各部分名称 。
结合学生的回答,老师用图片祟,引导学生认识三角形的各部分名称。
(5) 认识三角形的特征。
教师:谁能说一说这三个三角形都有哪些共同特征?
指名口答,根据学生口答,老师板书:三条边、三个角、三个顶点。
老师指出:每个三角形都有三条边、三个角和三个顶点,这就是三角形的特征。
2、建立三角形的底和高的概念。
(1) 介绍三角形的字母表示法。
老师在黑板上画一个三角形,并在三个顶点的旁边分别写上A、B、C三个字母。
为了表达方便,用字母A、B、C分别表示三角形的三个顶点,这个三角形可以表示成三角形ABC。
老师在黑板上画一个三角形,并在三个顶点的旁边分别写上M、N、D,让学生说一说这个三角形可以怎样用字母表示。
(2)认识三角形的底和高。
老师边说边操作:从三角形的一个顶点到它的对边做一条垂线,顶点和垂中之间的线段叫三角形的高,这条对边叫做三角形的底。
强调以下三点:画三角形一条边上的高要用直角三角板来画。要注明表示直角的符号。三角形的每一条边都可以看成底,都有相对应的高,如以BC边为底的高是AO,再如以AB边为底的高是CD,(如右上图所示),也就是说三角形和高是相应的。
3、教学例2。(探索三角形的稳定性)
(1) 找一找,猜一猜。
先让学生找出上面的图上哪儿有三角形?猜一猜它们有什么作用?
(2) 做一做,想一想。
教师:刚才大家从图中都找到这些部位有三角形,猜测这些三角形有稳定作用,下面我们用实验来验证我们的猜测。
先让学生拿出课前准备的用木条钉成的四边形和三角形,进行如下操作,依次使劲地把四边形和三角形向两边拉或往中间推,想一想发现了什么,并在小组内交流想法。
接着,教师组织学生进行全班交流,引导学生认知三角形具有稳定性。
最后,教师指出三角形的稳定性在生活得到广泛的应用。
三、巩固应用、内化提高
指导学生完成课本第81页“做一做”中的1、2题。
1、第1题。让学生拿出课前准备的用彩纸剪成的三角形,先与同伴说一说它的各部分名称,再以其中一边为底,画出它的高。学生操作完成后,教师用实物投影展示学生画的高,并组织学生进行评价。
2、第2题。让学生举出生活中应用三角形稳定性的例子。
3、出示一张松动了的木椅或木桌,请学生先分组讨论修理方案,然后组织全班交流。
四、回顾整理、反思提升
想想这节课我们学到了什么?探讨了三角形的哪些问题?你有哪些收获?
扩展阅读
三角形教案
三角形教案 篇1
今天,我的说课将分三大部分进行:一、说教材;二、说教学策略;三、说教学程序。
一、说教材
从教材地位、学习目标、重点难点、学情分析、教学准备五个方面阐述
1、本课内容在教材中的地位
本节教学内容是本章的重要内容之一。本节内容是在完成对相似三角形的判定条件进行研究的基础上,进一步探索研究相似三角形的性质,从而达到对相似三角形的定义、判定和性质的全面研究。从知识的前后联系来看,相似三角形可看作是全等三角形的拓广,相似三角形的性质研究也可看成是对全等三角形性质的进一步拓展研究。另外相似三角形的性质还是研究相似多边形性质的基础,也是今后研究圆中线段关系的有效工具。
从新课程对几何部分的编写来看,几何知识的结论较之老教材已经大为减少,教材首要关注的不是掌握多少几何知识的结论,相对更重视的是对学生合情推理能力的训练与培养。从这个角度上说,不论是全等还是相似,教材只是将它们作为训练学生合情推理的一个有效素材而已,正因为此,本节课应重视学生有条理的思考及有条理的表达。
2.学习目标
知识与技能方面:
探索相似三角形、相似多边形的性质,会运用相似三角形、相似多边形的性质解决有关问题;
过程与方法方面:
培养学生提出问题的能力,并能在提出问题的基础上确定研究问题的基本方向及研究方法,渗透从特殊到一般的拓展研究策略,同时发展学生合情推理及有条理地表达能力。
情感态度与价值观方面:
让学生在探求知识的活动过程中体会成功的喜悦,从而增强其学好数学的信心。
3.教学重点、难点
立足新课程标准和学生已有知识经验、数学活动经验,我确立了如下的教学重点和难点。
教学重点:相似三角形、相似多边形的性质及其应用
教学难点:①相似三角形性质的应用;
②促进学生有条理的思考及有条理的表达。
4.学情分析
从七上开始到现在,学生已经经历了一些平面图形的认识与探究活动,尤其是全等三角形性质的探究等活动,让学生初步积累了一定的合情推理的经验与能力,这是学生顺利完成本节学习内容的一个有利条件。
对相似形的性质的结论,学生是有生活经验与直观感受的。比如说两幅大小不等的中国地图,如果其相似比为2:1,我们在较大的地图上量出北京到南京的图上距离为4cm,问在较小的地图上北京到南京的图上距离是几厘米?学生肯定知道是2cm,这个问题中学生又没有学过相似形的性质,他怎么会知道呢?从中可以看出学生对比例尺的理解实际上是基于生活经验的。再比如说,如果你找一个没学过相似形性质的学生来问他:“如果用放大镜将一个小五角星的边长放大到原来的5倍,则这个小五角星的周长被放大到原来的几倍?面积被放大到原来的几倍?”这些问题学生基本上能给出较准确的回答。其实这就是学生对相似形性质的一种生活化的直观感受。
大家知道,源于学生原有认知水平和已有生活经验的教学设计才更能激发学生学习的内驱力,从而取得良好的教学效果。所以本节课在教学设计过程中不能把学生当作是对相似形的性质一无所知的,而是应在充分尊重学生已有的生活经验的基础上展开富有成效的教学设计。
5.教学准备
教师:直尺、多媒体课件
学生:必要的学习用具
二、说教学策略
从设计的指导思想、教学方法、学习方法三方面阐述
新课程标准指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者”,那么如何让学生在教学过程中真正成为学习的主人,同时教师在教学过程中又引导什么,与学生如何合作?这就是我这节课处理教学设计时的指导思想。为了更好地体现“学生主体”“教师主导”的地位,我打算从两条主线进行教学设计:一是从知识研究的大背景出发,结合知识的生长点拓展延伸、合理整合、组织教学;二是从尊重学生已有的知识与生活经验出发,利用学生已有的生活本能体验感受相似形的一系列性质的结论,并在此基础上创设教学情境,组织教学。力图将这两条线索有机融合,行成完整的教学体系。
采取引导发现法进行教学,充分发挥教师的主导作用与学生的主体作用,加强知识发生过程的教学,环环紧扣、层层深入,逐步引导学生观察、比较、分析,用探索、发现的方法,使学生在掌握知识的同时,逐步形成技能。
有一位教育家说过:“教给学生良好的学习方法比直接教给学生知识更重要。”本节课教给学生的学习方法有:提出问题,感受价值,探究解决的研究问题的基本方法,从特殊到一般的拓展研究方法等。以此发展学生思维能力的独立性与创造性,逐步训练学生由“被动学会”变成“主动会学”。
三、说教学程序
(一)类比研究,明确目标
师:同学们,回顾我们以往对全等三角形的研究过程,大家会发现,我们对一个几何对象的研究,往往从定义、判定和性质三方面进行。类似的我们对相似三角形的研究也是如此。而到目前为止,我们已经对相似形进行了哪些方面的研究呢?
生:已经研究了相似三角形的定义、判别条件。
师:那么我们今天该研究什么了?
生:相似三角形的性质。
设计意图:
从几何对象研究的大背景出发,给学生一个研究问题的基本途径。从而让学生自然明白本节课的学习目标:相似三角形的性质。
(二)提出问题,感受价值,探究解决
师:就你目前掌握的知识,你能说出相似三角形的1-2条性质吗?并说明你的依据。
生:相似三角形的对应角相等,对应边成比例。根据是相似三角形的定义。
师:对于相似三角形而言,边和角的性质我们已经得到,除边角外你认为还有哪些量之间的性质值得我们研究呢?
设计意图:
我们常常会说:提出问题比解决问题更重要。但是作为教师,我们应该清醒地认识到,学生提出问题的能力是需要逐步培养的。此处设问就是要培养学生提出问题的能力。我希望学生能提出周长、面积、对应高、对应中线、对应角平分线之间的关系来研究,甚至于我更希望学生能提出所有对应线段之间的关系来研究。估计学生能提出这其中的一部分问题。如果学生能提出这些问题(如相似三角形周长之比等于相似比等),就说明他的生活经验的直觉已经在起作用了。如果学生提不出这些问题,说明他的生活直觉经验还没有得到激发,我可以利用前面提到的放大镜问题、大小两幅地图问题等逐步启发,激发学生的一些源自生活化的思考,从而回到预设的教学轨道。
师:对于同学们提出的一系列有价值的问题,我们不可能在一节课内全部完成对它们的研究,所以我们从中挑出一部分内容先行研究。比如我们来研究周长之比,面积之比,对应高之比的问题。
师:为了让同学们感受到我们研究问题的实际价值。我们来看一个生活中的素材:
给形状相同且对应边之比为1:2的两块标牌的表面涂漆。如果小标牌用漆半听,那么大标牌用漆多少听?
师:(1)猜想用多少听油漆?(2)这个实际问题与我们刚才的什么问题有着直接关联?
生:可能猜半听、1听、2听、4听等。同时学生能感受到这是与相似三角形面积有关的问题。
设计意图:从学习心理学来说,如果能知道自己将要研究的知识的应用价值,则更能激发起学生学习的内在需求与研究热情。
师:同学们的猜测到底谁的对呢?请允许老师在这儿先卖个关子。让我们带着这个疑问来对下面的问题进行研究。到一定的时候自然会有结论。
情境一:如图,ΔABC∽ΔDEF,且相似比为2:1,DE、EF、FD三边的长度分别为4,5,6。(1)请你求出ΔABC的周长(学生只能用相似三角形对应边成比例求出ΔABC的三边长,然后求其周长)
(2)如果ΔDEF的周长为20,则ΔABC的周长是多少?说出你的理由。(通过这个问题的研究,学生已经可以得到相似三角形周长之比等于相似比的结论)
(3)如果ΔABC∽ΔDEF,相似比为k:1,且ΔDEF三边长分别用d、e、f表示,求ΔABC与ΔDEF的周长之比。
结论:相似三角形的周长之比等于相似比。
情境二:
师:相似三角形周长比问题研究完了,下面我们该研究什么内容了?
生:面积比问题。
师:那么对于相似三角形的面积比问题你打算怎样进行研究?请你在独立思考的基础上与小组同学一起商量,给出一个研究的基本途径与方法。
设计意图:人类在改造自然的过程中,会遇到很多从未见过的新情境、新课题。当我们遇到新问题的时候,确定研究方向与策略远比研究问题本身更有价值。如果你的研究方向与研究策略选择错误的话,你根本就不可能取得好的研究成果。而这种确定研究问题基本思路的能力也是我们向学生渗透教育的重要内容。所以对于相似三角形面积比的研究,我认为让学生探索所研究问题的基本走向与策略远比解题的结论与过程更有价值。
(师)在学生交流的基本研究方向与策略的基础上,与学生共同活动,作出两个三角形的对应高,通过相似三角形对应部分三角形相似的研究得到“相似三角形的对应高之比等于相似比”的结论。进而解决“相似三角形的面积比等于相似比的平方”的问题。体现教材整合。
(三)拓展研究,形成策略,回归生活
拓展研究一:由相似三角形对应高之比等于相似比,类比研究相似三角形对应中线、对应角平分线之比等于相似比的性质;(留待下节课研究,具体过程略)
拓展研究二:由相似三角形研究拓展到相似多边形研究
师:通过上述研究过程,我们已经得到相似三角形的周长之比等于相似比,面积之比等于相似比的平方。那么这些结论对一般地相似多边形还成立吗?下面请大家结合相似五边形进行研究。
情境三:如图,五边形ABCDE∽五边形A/B/C/D/E/,相似比为k,求其周长比与面积之比。
说明:对于周长之比,可由学生自行研究得结论。对于面积之比问题,与前面一样,先由学生讨论出研究问题的基本方向与策略——转化为三角形——来研究。然后通过师生活动合作研究得结论。
拓展结论1:相似多边形的周长之比等于相似比;
相似多边形的面积之比等于相似比的平方。
(结合相似五边形研究过程)
拓展结论2:相似多边形中对应三角形相似,相似比等于相似多边形的相似比;
相似多边形中对应对角线之比等于相似比;
进而拓展到:相似多边形中对应线段之比等于相似比等。
回归生活一:
师:通过前面的研究,我们得到了有关相似形的一系列结论,现在让我们回头来看前面的标牌涂漆问题。你能确定是几听吗?如果把题中的三角形条件改成更一般的“相似形”你还能解决吗?
回归生活二:(以师生聊天的方式进行)
其实我们生活中对相似形性质的直觉解释是正确的,线段、周长都属于一维空间,它的比当然等于相似比,而面积就属于二维空间了,它的比当然等于相似比的平方了,比如两个正方形的边长之比为1:2,面积之比一定为1:4。甚至在此基础上我们也可以想像:相似几何体的体积之比与相似比的关系是什么?
生:相似比的立方。
设计意图:新课程标准指出“数学教学活动要建立在学生已有生活经验的基础上---”;教育心理学认为:“源于学生生活实际的教育教学活动才更能让学生理解与接受,也更能激发学生的学习热情,从而导致好的教学效果”;于新华老师在一些教研活动中曾经说过:“源于学生的生活经验与数学直觉来展开教学设计,构建知识,发展能力,最终还要回到学生的生活经验理解上来,形成新的数学直觉。这才是教学的最高境界。”
而我的设计还有一个意图就是向学生渗透从生活中来回到生活中去的思想,让学生体会学好数学的重要性。
(四)操作应用,形成技能
课内检测:
1.已知两上三角形相似,请完成下面表格:
相似比2
对应高之比0.5
周长之比3 k
面积之比100
2.在一张比例尺为1:20xx的地图上,一块多边形地区的周长为72cm,面积为200cm2,求这个地区的实际周长和面积。
设计意图:落实双基,形成技能
(五)习题拓展,发展能力
已知,如图,ΔABC中,BC=10cm,高AH=8cm。点P、Q分别在线段AB、AC上,且PQ∥BC,分别过点P、Q作BC边的垂线PM、QN,垂足分别为M、N。我们把这样得到的矩形PMNQ称为△ABC的内接矩形。显然这样的内接矩形有无数个。
(1)小明在研究这些内接矩形时发现:当点P向点A运动过程中,线段PM长度逐渐变大,而线段PQ的长度逐渐变小;当点P向点B运动的过程中,线段PM逐渐变小,而线段PQ的长度逐渐变大,根据此消彼长的想法,他提出一个大胆的猜想:在点P的运动过程中,矩形PQNM的面积s是不变的。你认为他的猜想正确吗?为什么?
(2)在点P的运动过程中,矩形PMNQ的面积有最大值吗?有最小值吗?
答:最大值,最小值(填“有”或“没有”)。请你粗略地画出矩形面积S随线段PM长度x变化的大致图象。
(3)小明对关于矩形PMNQ的面积的最值问题提出了如下猜想:
①当点P为AB中点时,矩形PMNQ的面积最大;
②当PM=PQ时,矩形PMNQ的面积最大。
你认为哪一个猜想较为合理?为什么?
(4)设图中线段PM的长度为x,请你建立矩形PQNM的面积S关于变量x的函数关系式。
设计意图:将课本基本习题改造成发展学生能力的开放型问题研究,体现了课程整合的价值。
(六)作业(略)
三角形教案 篇2
难点名称
幼儿能够在生活中很好的应用三角形并能够进行创意。
难点分析
从知识角度分析为什么难
幼儿能够在生活中很好的应用三角形及创意绘画,需要幼儿掌握三角形的特点及其组成部分,平时认真仔细观察生活,并加以想象创作,对幼儿来说具有一定的难度。
从学生角度分析为什么难对幼儿来说都能够认识三角形,但是要能够运用并进行创意绘画,需要幼儿具有丰富的想象力和创造力,并且具有一定的绘画能力,对幼儿有一定难度。
难点教学方法
1、通过生活照片直观演示引导幼儿观察了解三角形在生活中的应用
2、通过教师示范创意三角形,引导幼儿边唱边绘画
教学过程
导入
1、游戏导入:教师通过点击游戏直接导入主题,小朋友们好,今天咱们来认识一个新的图形宝宝“三角形”;你们认识三角形吗?让我们玩一个点击小游戏考一考自己吧!
2、提出问题:请小朋友们仔细观察想一想,到底什么样的图形才是三角形呢?幼儿试着说一说。
知识讲解
(难点突破)
2、三角形定义:由三条线段首尾相接围成的图形叫做三角形。
3、线段:一条直直的线有两个端点。
3、首尾相接:一条线段的开头端点与前一条线段的尾点连接重合,叫做首位相接。
4、三角形特点:每个三角形都有三个顶点、三条边和三个角组成。
课堂练习
(难点巩固)
5、快速判断:请小朋友们看一看下图中哪个是三角形?
6、连一连:图上有四个点,请小朋友任选三个点,画出三角形吧!
7、游戏“小猴过河”:小朋友们,小猴想要过河,可是桥上有很多的图形宝宝,只有踩着三角形宝宝,小猴才能顺利地过河,小猴不认识三角形,这可把小猴难住了。小朋友,请你来帮助小猴找到过河的三角形路线吧!
8、生活应用
①提问:小朋友们,在我们的.日常生活中也有很多常见的三角形宝宝,请你来说一说你都见过什么呢?
②三角形的特点:美观性、稳定性(教师出示图片,引导幼儿观看三角形美观、稳定性在生活中的应用。)
9、创意绘画:
①提问:小朋友们,通过给三角形添画,你可以把三角形变成什么呢?
②三角形创意演示(边唱边出示图片):三角形,变变变,变个风筝天上飞,变个风筝天上飞,我是三角形好宝宝;三角形,变变变,边条鱼儿水中游,变条鱼儿水中游,我是三角形好宝宝。
③出示三角形创意简笔画:比如说,三角形可以变成一只小鸡,变成一块西瓜,变成一条章鱼,等等。
小结小朋友们,快来大胆想象一下,尝试着把三角形画一画、唱一唱吧!
三角形教案 篇3
尊敬的各位老师:
大家好!
今天我说课的题目是义务教育数学课程标准实验教材八年级下册第四章第六节的《探索相似三角形的条件(一)》这一课内容。下面我分五部分来汇报我这节课的教学设计,这就是“教材分析“、“教学”、“学法”、“教学过程”、“教学评价”。
一、教材分析:
(一)教材的地位和作用:
“探索相似三角形的条件”是在学习了相似图形及相似三角形的概念等知识后,单独研究如何探索相似三角形的条件的一课,本课是判定三角形相似的起始课,是本章的重点之一。既是前面知识的延伸和全等三角形性质的拓展,也是今后证明线段成比例,求几何图形和研究相似多边形性质的重要工具,它在工农业生产、土木建筑、测量绘图和日常生活中有着广泛的应用。比如我们在测量水塔、高楼大厦的高度时,都要利用相似三角形的判定来解决有关问题。在本课中,学生学习的主要内容是三角形相似的判定定理1及其初步应用,这就为下节课学习相似三角形的判定条件(二)(三)打下好的基础。通过本节课的学习,还可培养学生猜想、实验、证明、探索等能力,对掌握观察、比较、类比、转化等思想有重要作用。因此,这节课在本章中有着举足轻重的地位。
(二)教学目标:
根据《新课程标准纲要》对这部分内容的要求及本课的特点,结合学生的实情,我本节课的教学目标确定为:
l知识目标:
①掌握三角形相似的判定方法(一)。
②会用相似三角形的判定方法(一)来判断及计算。
l能力目标:
①通过亲身体会得出相似三角形的判定方法(一),培养学生的动手操作能力。
②利用相似三角形的判定方法(一)进行有关判断及计算,训练学生的灵活运用能力。
l情感目标:通过实物演示和电化教学手段,把抽象问题直观化,从而发
展学生的合情推理能力,进一步培养逻辑推理能力。
(三)教学重点与难点
这节课的重点是三角形相似的判定定理1及应用。
难点是三角形相似的判定方法1的运用。
突破重难点的方法是充分运用多媒体教学手段,设置问题、探究讨论、例题讲解、课后小结直至布置作业,突出主线,层层深入,逐一突破重难点。
二、教学方法的选择与应用
根据本节课的教学目标、教材内容以及学生的认知特点,教学上采用以引导发现法为主,并以讨论法、演示法相结合,设计“实验、观察、讨论”的教学方法,意在帮助学生通过直观情景观察和自己动手实验,从自己的实践中获取知识,并通过讨论来深化对知识的理解。本节课采用了多媒体辅助教学,一方面能够直观、生动地反映图形,增加课堂的容量,同时有利于突出重点、分散难点,增强教学条理性,形象性,更好地提高课堂效率。
三、学法
《数学新课程标准纲要》指出:有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学习数学的重要方式。为了充分体现《数学新课程标准纲要》的要求,培养学生的动手实践能力,逻辑推理能力,积累丰富的数学活动经验,这节课主要采用动手实践,自主探索与合作交流的学习方法,使学生积极参与教学过程,在教学过程展开思维,培养学生提出问题、分析问题、解决问题的能力,进一步理解观察、类比、分析等数学思想方法。
四、教学设计:
根据《数学课程标准》中“要引导学生投入到探索与交流的学习活动中”的教学要求,本节课教学过程我是这样设计的。
(一)、点燃思维火花(趣味题目引入,配以动画演示)
1、为了测量一个大峡谷的宽度,地质勘探人员在对面的岩石上观察到一个特别明显的标志点O,再在他们所在的这一侧选点A、B、D,使得AB┷AO,DB┷AB,然后确定DO和AB的交点C,测得AC=120m,CB=60m,BD=50m,你能帮助他们算出峡谷的宽度AO吗?
(设计意图:以趣味性题目引入,从而引起悬念,激发学生的学习兴趣。)
假如利用相似三角形原理可不可以解决这个问题呢?那么如何判定这两个三角形相似呢?这就是我们这节课要学习的内容。(引出课题)
(二)、动手实验探索(分小组研究讨论)
还记得全等三角形的判定方法吗?那么判定相似三角形要不要这么多条件呢?假如当条件只有角这个元素时,能不能判定两个三角形相似呢?
1、若有一个角对应相等,能否判定两个三角形相似?
(投示)(1)每人画一个△ABC,使∠BAC=60°,与同伴交流,两个三角形是否相似。
结论:只有一个角对应相等,不能判定两个三角形相似。
2、若有两个角对应相等,能否判定两个三角形相似?
(2)一人画△ABC,另一人画△A′B′C′,使∠A与∠A′都等于60°,∠B与∠B′都等于45°,比较∠C和∠C′是否相等,测量三边长度,探求是否相等。
改变角的度数再试一次。(用三个小组测量结果)
在此过程中,给学生充分的时间画图、观察、比较、交流,最后通过活动让学生用语言概括总结。
引出判定条件1:(学生总结,教师纠正)
如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.
可简单说成:两角对应相等,两三角形相似.
组织学生进行讨论,在此基础上教师引导学生从对应边和对应角入手进行观察。教师在多媒体几何画板上直观地演示。在教学中,通过以趣味性题目引入,从而引起悬念,引起学生的注意,激发他们的求知欲,让每个学生都积极参与。
通过学生自己探索、讨论,由学生自己得出结论:如果两个三角形中有两对角对应相等,那么这两个三角形相似。即两角对应相等的两个三角形相似。这样,从学生自己动力手操作、实验所得出的判定条件,让学生产生自豪感及满足感,培养学生的自信心及逻辑推理能力。
(三)、例题讲解:
例:如图,D、E分别是△ABC这AB、BC上的点,DE∥BC,
(1)图中有哪些相等的角?
(2)找出图中的相似三角形,并说明理由。
(3)写出三组成比例的线段。
分析:本例意在渗透平行与相似的内在联系,同时,本例有意识地渗透了简单逻辑推理的思想,承前启后。
解:(1)DE//BC
∠ADE与∠ABC是同位角∠ADE=∠ABC,∠AED=∠ACB
∠AED与∠ACB是同位角
(2)△ADE∽△ABC理由是:
∠ADE=∠ABC
∠AED=∠ACB△ADE∽△ABC
(3)△ADE∽△ABC==
想一想:在上面的例题的条件下,=吗?=吗?(学生画图,交流,老师用多媒体演示出来。)
解:由DE//BC得,=
根据比例基本性质得:
=
即=
两边同时减去1,得
1=1
即=
课后思考:若DE与BC不平行,它们还可能相似吗?说明理由。
(设计意图:分三个问题显示,由易到难,新旧知识相结合,分散难点,让学生明白判定方法(一)在实际问题中的应用,最后设置一道课后思考与讨论,使题目进一步延伸与拓展,培养学生的发散思维。)
(三)随堂练习:
判断题:(让学生判断,老师用几何画板演示)
(1)有一个锐角对应相等的两个直角三角形相似。()
(2)所有的直角三角形都相似。()
(3)有一个角相等的两个等腰三角形相似。()
(4)顶角相等的两个等腰三角形相似。()
(5)所有的等边三角形都相似。()
解:(1)对。有一个锐角对应相等的两个直角三角形相似。
因为是两个直角三角形,所以有一对直角相等,再加上一对锐角相等,根据判定方法1,得,这两个三角形相似。
(2)错。
(3)错。有一个角相等的两个等腰三角形不相似。
例:一个顶角为30°的等腰三角形与一个底角等于30°的等腰三角形就不相似.
(4)对。顶角相等的两个等腰三角形相似。
因为两个等腰三角形的顶角相等,所以它们的四个底角都相等,因此有三对角对应相等,所以这两个三角形相似。
(5)对。因为等边三角形的三个角都是60°。
(设计意图:使学生加深对判定方法(一)的理解。)
(四)补充练习:
(1)已知:△ABC和△A′B′C′中,∠B=∠B′=75°,∠C=50°,∠A′=55°,问:这两个三角形相似吗?为什么?
解:(1)在△ABC中,
∵∠B=75°,∠C=50°
∴∠A=55°
∴∠B=∠B′,∠A=∠A′
∴△ABC∽△A′B′C′
(2)已知△ABC和△A′B′C′中,∠B=∠B′=75°,∠A=50°,∠A′=55°,问:这两个三角形相似吗?为什么?
解:(1)在△ABC中,
∵∠B=75°,∠A=50°
∴∠C=55°
而在△A′B′C′中,
∵∠B′=75°,∠A′=55°
∴∠C′=50°
∴根据判定方法(一),△ABC和△A′B′C′不相似。
(设计意图:通过让学生比较这两道题中条件的异同,进一步让学生理解判定方法(一)的运用)
现再请学生回头看看引入那道题,利用判定方法(一)让学生自己去发现两个三角形相似,然后再运用相似三角形的对应边成比例来解这道题,这样一来可以加深对判定方法(一)的理解,二来可以增强学生的自信心,培养学生分析问题、解决问题的能力。
通过系列问题的设置和解决,旨在降低难度,使难度点予以突破,同时使学生在获得新知的情况下,体验成功,从而增加对数学的兴趣。
(五)、总结提高:
提问:“通过这节课的学习有什么收获?”
(同桌对讲,畅谈自己的感受和体会,学生发言,老师总结与归纳)
(设计意图:让学生自己小结,活跃了课堂气氛,做到全员参与,理清了知识脉络,强化了重点,培养了学生口头表达能力。)
(六)、分层作业:
(必做题):P119的习题4.7的1、2
(选做题):
如图,已知D是△ABC的边AB上任一点,DF∥AC交BC于E.AF交BC于M,且∠B=∠F,△AMC∽△BDE吗?请说明理由。
(设计意图:让学生巩固所学内容并进行自我检验与评价,既面向全体学生,又因材施教,照顾到学有余力的学生。)
l新的探索:(提高题)
(4)如图梯形ABCD中,AD∥BC,∠ABC=90°,对角线BD⊥DC,求证:△ABD∽△DCB.
分析:由已知条件不可能推出有关比例式时,只能找相等的角.用定理“两角对应相等,两三角形相似”时,要注意图形中的公共角、对顶角、直角、两直线平行时的同位角、内错角或等角的余角、补角等等.
(设计意图:旨在体现因材施教、分层教学的原则。同时上述问题的进一步伸展,给学生展示了一个思维发散的平台。而且这也为下节课学习证明作了必要的铺垫。)
四、教学评价:
为了实现教学目标,优化教学过程,提高课堂效率,在教学上组织学生参与“创设问题、实验、观察、讨论、总结”这符合现代教学理论的'观点,把素质教育落到实处。另一方面对学生暴露思维过程,拓展性和开放性题目的设计编排,培养了学生的直觉思维能力和发散思维能力。
五分钟小测:
1、
C
如图,AB,CD相交于E,ΔAEC∽ΔDEB,∠A与∠D是对应角,则其余的对应角为xx,对应边的比例式为xx
A
E
B
D
2、
A
如图:∠BAC=∠ADB,图中有相似三角形吗?
为什么?
D
C
B
3、已知ΔABC,P是AB上一点,连接CP,满足什么条件时,ΔACP与ΔABC相似.
三角形教案 篇4
教学内容:
含有几个小三角形(《现代小学数学》第三册智力游戏).
教学目标:
1.选择一个适当的图形为单位,进行图形的分解训练,分析几何图形之间包含的关系.
2.初步培养学生观察能力、空间观念和推理能力.
3.养成仔细观察,认真审题的好习惯.
教学重点:
如何把一个图形分解成单位图形.
教学难点:
推导图形中含有几个小三角形的推理过程.
教学用具:
小黑板、彩色图形、小卷子两张(同题板1、题板2内容)
教学过程:
(课前板书课题:含有几个小三角形)
一、复习导入
师生问好,开始上课!
1.导入
师:这儿有三种图形,你知道它是什么形状吗?它呢?
(师一个个出示,生分别说出是什么形状)
2.准备题(一)
师:我们看投影上的这些图形,你能从这些图形中找出一共有几个三角形、几个正方形、几个长方形吗?
一共有( )个三角形
( )个正方形
( )个长方形
(一问一问出示,用数字板反馈,并说出是哪几号图形)
师:这节课我们一起来研究图形之间的包含关系.继续看投影.
3.准备题(二)
考眼力:下图中各是由几个相等的小三角形拼成的?
二、探讨新知
第一层次:动手实践
1.师:请你想办法求出下面各题的结果.(出示题板1)
(反馈①)生回答后追问:你是怎样想的?
生:用
摆了摆含有2个
生:斜着画一条线,分成了2个小三角形
生边说师边画:
(反馈②③步骤同上)
请学生用学具亲自来验证答案
第二层次:讨论研究
2.师:如果把这三个答案作为已知条件(板书:已知)
你能求出下面的问题吗?(出示题板2)
师:用什么方法可以得到正确答案,前后桌4人一组进行讨论.(拿出小卷子2)
(反馈①)生:可以画一画
师追问:还有其他的'方法吗?
生:我们已经知道1个长方形含有2个小正方形,1个小正方形含有2个小三角形,2个小正方形含有(2×2=4)个小三角形,所以1个长方形有4个小三角形.
师:刚才××同学用的方法太好了,他用的方法叫推理方法,根据已知的一个或几个判断,推导出最后的结论,这种方法就是推理的方法.
还有谁用了推理的方法,你能说说你是怎样推理的吗?其他同学在心里和他一起说说.
(反馈②)生:可以画一画
生:可以用推理方法(同①的步骤)
(采取个人说,同桌对说练习推理方法,请学生用单位图形验证所得的结论,肯定学生的答案和方法都很正确.)
第三层次:运用推理
师:刚才同学讨论得特别好,再出一问:(出示题板3)
师:你能用推理方法得出结论吗?请4人一组讨论.
反馈①生:画一画
反馈②
方法一:
1个大正方形含有4个小正方形
1个小正方形含有2个小三角形
4个小正方形含有(2×4=8)个小三角形
所以1个大正方形含有8个小三角形
方法二:
1个大正方形含有2个小长方形
1个小长方形含有4个小三角形
两个小长方形含有(4×2=8)个小三角形
所以1个大正方形含有8个小三角形
方法三:
1个小正方形含有2个小三角形
1个小长方形含有(2×2=4)个小三角形
1个大正方形含有(2×2×2=8)个小三角形
师:用推理的方法算出的结果是否正确,请4人一组用虚线画一画验证我们推理的结论正确吗?(事先发给每组一张有6个大正方形的纸)
反馈:
对比:师:上面两题所含的两种小三角形个数为什么不一样?
生:小三角形的大小不一样,个数也不一样.
三、巩固练习(投影反馈)
1.下面的图形里含有几个这样的?
2.涂阴影的小三角形拼成下面的图形,各需要几个?
3.下面图形分别是用多少个像图内那样的小三角形组成的?你能用虚线画一画吗?
板书设计:
三角形教案 篇5
一、教材分析
本节教材是学生对小学阶段三角形有初步了解的基础上进一步认识三角形的特点和性质。三角形是最简单、最基本,很常见的一种几何图形,在工农业生产和日常生活中有广泛的应用价值。对学生更好地认识现实世界,拓展空间观念都有非常重要的作用,同时对今后学习三角形全等、相似和解直角三解形,解决相关的实际问题,都有不可低估的作用。
二、教学目标
1、结合实物和图形理解三角形定义
2、找到所有三角形的共同特点。
3、会用三角形顶点的三个大写字母和形象符号(“△”)来记一个三角形。
4、初步了解任意三角形三边之间的大小关系。
5、能应用所学知识解决日常生活中与三角形有关的实际问题。
6、初步感受三角形简单、广泛地适用性。
7、培养学生动手、动脑、合作、交流、探究意识。
三、教学重难点
重点:三角形共同特点的.理解及三角形三边关系性质的理解。
难点:应用三边关系性质解决简章的实际问题。
四、教具及材料准备
三角板、实物的三角形、包装带、剪刀、头钉、白纸、透明胶等(师生同备)
五、学生情况及教学构思
七年级学生年龄较小,思维正处在由具体形象思维向抽象逻辑思维转化的阶段,针对这一特点,在教学中设计了以下教学环节:从实际出发说三角形、找三角形、记三角形、画三角形、算三角形、感悟三角形、剪三角形、做三角形、小结三角形的教学环节。
六、教学实施
1、师:在小学我们进一步了解了三角形,今天我们在一起进一步认识三角形的定义、记法及其相关性质,随之在黑板上板书课题(1 认识三角形)哪位同学能列举日常生活中与三角形有关的实例(同学们争先举手答问)。
生:像铁塔,空调器支架、铁桥、教室里饮水机支架、屋顶支架等都是由许多三角形构成的。
师:在黑板上画出同学熟悉的屋顶框架图。
2、师:既然小到生活小事,大到交通、建筑等随处可见三角形的图形,那么三角形有哪些共同特点呢?
甲生:每一个三角形都有三个内角,三个顶点。
乙生:每一个三角形都由三条线段组成。
丙生:任意三角形的三内角之和都等于180°。
(同学们发言积极)
师:为了方便通常用三角形三顶点的大写字母来记一个三角形、并在三个大写字母前面加上符号“△”。如图中可记作“△ABC”,(并在黑板上板书 △ABC),同时规定每个顶点的大写字母所对边就用它的小写字母表示,顶点A所对的边BC用a表示,边AC、AB分别用b、c表示。
师:请同学们在屋顶框架图中至少找出5个不同的三角形,并用三个大写字母记出相关的三角形,并与同伴交流。
三角形教案 篇6
1、关注学生学习研究过程。老师在教学三角形的意义时,没有直接把“由三条线段围成的图形叫做三角形”这个定义直接地呈现给学生,而是紧紧围绕三条线段”、“围成”这两个关键词进行教学,通过比较、判断等等手段使学生认识到三角形必须具备两个条件:
2、锐角三角形:三个角都小于60度,三个角度相加的总角度的和等于180度;
3、三角形按角分:锐角三角形,直角三角形,钝角三角形;
4、注重设计的趣味性。在最初的'定义学习之后,我们进入到本课的难点,画高。教师通过让学生自己来找高,以及自己动手画画高,到最后优生的演示,无一不是体现学生在课堂上的自主地位。虽然画高到最后的钝角的高,这个过程出来的比较曲折,但我相信真正思考该问题的学生对三角形的学习是非常深刻。这也符合我们新课程的教学理念:以学生为主体,充分发挥学生的探究精神。
5、等边三角形,三条边都相等的三角形,又叫做正三角形;
6、不过,我认为本课还是有值得改进的地方。比如,在画高的过程中,教师所呈现在黑板上的三角形不够大,导致三条高密密麻麻地堆在一起,影响学生更为直观地进行理解。同时,板书的排版还需要更为简洁、合理。
7、钝角三角形:有一个角大于90度,其余二个角都小于60度,三个角度相加的总角度的和等于180度。
8、三角形三条边不一定相等。
9、三角形小学数学高年级的内容之一。在本课之前,学生已经学习过一些相关的知识点,如线段、角、也能简单区分三角形和其他形状的区别,三角形的认识是平面图形知识的起点,是学习研究其他几何图形的基础,在实践中有着广泛的应用。本节课的教学主要包括三角形的定义、画高等内容。老师的这节课整个教学过程始终围绕教学目标展开,层次比较清楚,环节紧凑,并注意引导学生通过观察、分析、动手实践、自主探索、合作交流等活动,突出体现了学生对知识的获取和能力的培养。具体体现在以下几个方面:
10、二、是否围成封闭的图形。接着安排判断练习,从正反两方面,同时还出现用曲线围成的图形、用不封闭的线围成的图形等。进一步加深对三角形意义的理解。
11、三角形按边分:等边三角形和非等边三角形,非等边三角形又可分为等腰三角形和三条边都不相等的三角形;
12、参考资料人民教育出版社
13、当然,作为一名非专职的数学老师去听课,我的观点可能还是比较肤浅或不够正确,但老师的教态自然、大方,教学设计紧凑等方面仍是值得我们学习的。
14、等腰三角形,有两条边相等的三角形,
15、应该是:三角形任两边之差小于第三边。它是由三角形任意两边和大于第三边变形得到的。
16、拓展资料
17、直角三角形:有一个角等于90度,其余二个角的角度相加的总角度的和等于90度;
18、一、是否具有三条线段;
19、三条边都不相等的三角形
20、《三角形三边的关系》教学设计
三角形优秀教案十篇
老师每一堂课都需要一份完整教学课件,认真规划好自己教案课件是每个老师每天都要做的事情。只要老师写的教案课件优秀,也能认识到教学过程中不足。经过一番调研和整理编辑推出了这篇“三角形优秀教案”,请你耐心品读本文希望你会喜欢!
三角形优秀教案 篇1
【学习目标】
1. 知识技能
利用平行四边形的性质和判定证明出三角形的中位线定理,并会用定理进行计算或证明.
2.数学思考
通过猜想、验证、推理、交流等数学活动,发展我们的动手操作能力、合情推理能力以及应用数学能力.
3.解决问题
通过三角形中位线定理的探索过程,丰富我们从事数学活动的经验与体验,感受数学思考过程的条理性及解决问题策略的多样性.
4.情感态度
(1)在观察、分析过程中发展我们主动探索、质疑和独立思考的习惯.
(2)经历合作探究的过程,培养我们合作交流意识和探索精神.
【学习重难点】
1.教学重点:理解和掌握三角形中位线定理,并能熟练运用.
2.教学难点:利用平行四边形的性质与判定证明三角形的中位线定理,以及复杂图形中通过作辅助线应用三角形中位线定理.
课前延伸
各人准备一张三角形纸片,记作△ABC,分别取AB、AC边中点D、E,用直尺分别测量DE、BC的长,比较DE、BC的大小关系,并猜想DE、BC之间存在怎样的数量关系.还能借助量角器测量有关角的大小,并猜想出DE、BC之间的位置关系吗?
课内探究
一.上面猜想进行理论证明.
已知:D、E分别平分AB、AC,
求证:_______________________
二.总结归纳.
三角形的中位线定义:
三角形的中位线定理:
三.三角形的中位线和中线区别:
三角形中位线定理的符号语言:
四.随堂练习、巩固深化
1.D、E分别平分AB、AC,若BC=10cm,则DE=______;
若DE= cm,则BC=______.
2.已知 中, ,且 cm,D、E、F分别是AB、BC、CA的中点,则 的周长是_________cm.
3.如图, 内有一点P,EF是 的中位线,MN是 的中位线,
求证:四边形MNFE是平行四边形.
4.判断任意一个四边形各边中点连接所形成四边形的形状,并证明你的结论.
已知:E、F、G、H分别为四边形ABCD中点,
求证:四边形EFGH为平行四边形.
5.实际应用:
想知道一池塘边缘宽度AB,且AB不可直接测量,怎么办?
提醒:池塘旁取一点C,C与A、B之间可以直接到达.
五.当场训练反馈:
1.如图,任意四边形ABCD各边中点分别为E、F、G、H,若对角线AC、BD的长都为10 cm,则四边形EFGH的周长是( )
A.40cm B.20cm C.10cm D.5cm
2.以三角形的三个顶点及三边中点为顶点的平行四边形共有( )
A.1个 B.2个 C.3个 D.4个
课后提升
1.已知一个三角形的周长为a,它的三条中线组成的第二个三角形周长为_________,
第二个三角形的三条中线又组成第三个三角形,其周长为_________,以此类推,
第2010个三角形的周长为_________.
2.如图,已知△ABC的中线BD、CE相交于点O,F、G分别是BO、CO的中点,
试猜想EF、DG之间的关系,并证明你的结论.
三角形优秀教案 篇2
教学内容
义务教育课程标准实验教科书(西南师大版)四年级(下)第51~54页主题图、例1、例2及课堂活动第1~3题,练习十第1~5题。
教学目标
1、通过实验,使学生知道三角形的稳定性及其在生活中的应用
2、培养学生观察、操作的能力和应用数学知识解决实际问题的能力。
3、体会数学与生活的联系,培养学生学习数学的兴趣。
教学重点:
掌握三角形的特性。
教学难点:
三角形的稳定性在实际生活中的应用。
教具准备:
木条制作的长方形和三角形、不条、三角板等
教学过程
一、游戏导入
1.请两位学生到黑板前学交警指挥交通车时的各种动作姿势。
2.指名两位学生在黑板上画出刚才所观察交警的手与手、手与身躯构成的角。
3.指名学生将角的两边上取两点,再将两点连接起来得到第三条线段,并说出是一个什么图形?
多媒体出示生活中形状是三角形的物体,让学生观察后,你想探索三角形的哪些问题?
学生自由提问。
板书:意义、特征、特性
二、探究新知
(一)理解三角形的意义
1.学生用小棒任意摆出一个三角形。
教师出示几个具有代表性的图形:
(1)(2)(3)
学生讨论三个图形,是不是都是三角形?为什么?
刚才大家在判断上述三个图形是不是三角形时,都注意到三条线段,围成等这些重要条件(板书:三条段、围成),谁能说说什么是三角形吗?(由三条线段围成的图形叫三角形)
2.练习
(1)举出日常生活中见到的三角形。
(2)判断下列哪些图形是三角形,并说明理由。
(1)(2)(3)(4)(5)
(二)探索三角形的特征
(1)虽然三角形的形状各不相同,但也有相同的地方,谁能说说有哪些地方相同呢?(分组讨论)
(2)小组指定代表说说讨论的结果。
板书:边——3条
角——3个
顶点——3个
(3)让学生用自己的话说说三角形的特征。
学生阅读教材上的内容。
多媒体出示三角形,让学生指出三角形的边、角、顶点。
(4)学生指出三角板上的边、角、顶点。
(三)探索三角形的特性
多媒体出示电线杆、自行车、货柜架等实物图,让学生指出其中的三角形。
提问:为什么这些部位要做成三角形?(分组讨论后,指定学生回答)
学生操作:用木条钉成平行四边形和三角形,然后用力拉、推,让学生观察,大家会发现什么?
这说明三角形具有什么特性?(稳定性)
举出生活中见到哪些物体的哪些部位是做成三角形的。
三、练习。
1.任意画一个三角形。
2.学生在钉子板上围出不同的三角形。
3.折一折:把一张纸对角对折,能数出几个三角形?再对角对折,又能数出几个三角形呢?
4.说说日常生活中哪些地方应用了三角形的特性?
四、小结:
这节课我们学习了什么?探讨了三角形的哪些问题?你有哪些收获?
板书设计:
三角形的特性
意义:由三条线段围成的图形叫三角形。
特征:边——3条
角——3个
顶点——3个
特性:稳定性。
三角形优秀教案 篇3
教学目标:
1 。知识与技能:
(1 )探索并掌握三角形的面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。
(2 )培养学生应用已有知识解决新问题的能力。
2 。过程与方法:使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。
3 。情感、态度与价值观:让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。
教学重点:探索并掌握三角形面积计算公式,能正确计算三角形的面积。
教学难点:三角形面积公式的推导过程。
教学关键:让学生经历实际操作、合作交流、归纳发现和抽象公式的过程。
教具准备:红领巾、长方形纸片、两个完全一样的三角形各三组、剪刀等。
学具准备:每个小组至少准备一个长方形,完全一样的直角三角形、锐角三角形、钝角三角形各两个,剪刀。
教学过程:
一、创设情境,揭示课题
师:今天老师有什么不同? 老师今天也配带了红领巾!你们能帮忙算算做一条红领巾要用多少布吗?(把红领巾展开贴在黑板上)
教师提出问题:
⑴ 红领巾是什么形状的?(三角形)。
⑵ 你会算三角形的面积吗?
师:这节课我们一起来学习探索三角形面积的计算方法。板书:三角形的面积
[ 设计意图:利用学生身上熟悉的红领巾实物,首先由计算红领巾的面积这样一个实际问题引入三角形面积计算的问题,激起了学生的求知欲,从而将“ 教学活动” 转化为“ 学习活动” 。]
3 。讨论与归纳公式
(1 )讨论:(小黑板出示问题)
①三角形的底和高与平行四边形的底和高有什么关系?
②怎样求三角形的面积?
③你能归纳出三角形的面积计算公式吗?
[ 设计意图: 借助图形直观性,教师指明讨论的部分是三角形的底和高与平行四边形的底和高的关系,有助于学生进行推理,加深对三角形的面积计算公式的理解,同时又渗透了转化的数学思维,突破了教学难点,提高学生的推理、思维能力和课堂教学效率。]
二、应用新知,解决问题
师:现在同学们能帮老师解决问题了吗?
1 。计算一条红领巾的面积。
师:你能估算出这条红领巾的底和高各是多少吗?
师:这条红领巾的底是100cm, 高是33cm ,你能计算出它的面积是多少吗?
学生独立完成,让一位学生到黑板上板演;全班交流做法和结果,老师提出书写格式和应注意地方。
师:计算三角形的面积,应注意什么地方?(强调“÷2” 和“ 底和高要对应” 这两个重点、难点。)
2 。独立完成P85 做一做。
学生板演,教师点评。
[设计意图:应用三角形的面积的计算公式解决问题,巩固本节课的新知识点和应注重的要点,让学生进一步加深对公式的印象。]
三、深化理解、应用拓展
课本86 页的练习第1 题。(课件出示)
师:你认识这些道路交通警示标志吗?一块标志牌的面积大约是多少平方分米?
(让学生认识多种交通指示牌,教育学生要遵守交通规则,注意交通安全,接着让学生口头列算式,不用计算。)
[ 设计意图:练习题以三个层次设计,第一层基本练习,旨在巩固、熟练公式;第二层设计判断练习,学生在思考中,从正、反两方面强化对求积公式的理解,突破公式中重点和难点;第三个层次,主要通过实际问题的解决,让学生感知生活化的数学,增强学生用数学的意识,并通过拓展题练习,训练学生思维的灵活性与逆向思维能力,拓展学生数学思维,同时深化对三角形面积公式的理解。]
四、总结
师:今天这节课,我们主要学习了什么知识?你有什么收获?
(小出示)让学生说一说图意:
五、课外作业
课本第87 页“ 练习十六” 第5 、6 、7 题。
教学反思:
本节内容是在平行四边形面积计算的基础上进行教学的,主要是引导学生通过三角形面积公式的推导去理解和掌握三角形的面积计算公式。根据新课程中的新理念要求,教学应该由原来 “ 教学活动” 转化为“ 学习活动”, 引导学生学会学习。因此,在教学中教师应注重学生自己动手操作,从操作中掌握方法,发现问题和解决问题。
1、小组结合动手操作
在教学中,我让学生动手操作,分别将三组两个完全一样的三角形拼成一个平行四边形,并比较每个三角形与拼成的平行四边形各部分间的关系,同时在操作中向学生渗透旋转、平移的方法,让学生体验和感知三角形面积公式的推导过程。在这个过程中,学生们表现出了浓厚的兴趣,个个都很积极、很投入地动手操作,极大调动了学生思维活动。学生真正成为了学习的主体。
2、引导学生发现问题、思考问题,培养合作精神
在这节课中,探讨平行四边形面积公式与三角形面积公式有何不同,三角形面积公式中的“ 除以2” 是怎么来的?在探讨这个问题时,今后可采用小组讨论的方式,在讨论中发现问题,解决问题,教师不能包办。三角形面积公式中的“ 除以2” 的教学中,应重点的强调讲述其意义。加强小组讨论,既可培养学生的合作精神,又可活跃课堂气氛。
3、应用公式解决生活中的问题
新课程非常重视学生在活动中的体验,强调学生身临其境的体验。让学生运用所学三角形的面积计算公式解决实际问题。练习题应扩展开,出些拓展练习题开发学生数学思维,这点在本节课中做得还不够。在时间许可的情况下,应该多补充一些生活中的实例,使学生尝到应用知识的快乐,把课堂气氛推向高潮。
此外,在这节课的教学过程中,我发现了自己平时教学方式上的不足。例如学生在回答问题时,没能有效地引导学生归纳知识, 从而培养学生的数学表达能力和数学语言,今后要注意在教学中的不足。
三角形优秀教案 篇4
教学内容:
教材第67页例6、“做一做”及教材第69页练习十六第1~3题。
教学目标:
1.通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。
2.能运用三角形的内角和是180°这一结论,求三角形中未知角的度数。
3.培养学生动手动脑及分析推理能力。
重点难点:
掌握三角形的内角和是180°。
教学准备:
三角形卡片、量角器、直尺。
导学过程
一、复习
1、什么是平角?平角是多少度?
2、计算角的度数。
3、回忆三角形的相关知识。(出示直角三角形、锐角三角形、钝角三角形)
二、新知
(设计意图:让学生经历质疑验证结论这样的思维过程,真正整体感知三角形内角和的知识,真正验证了“实践出真知” 的道理,这样的教学,将三角形内角和置于平面图形内角和的大背景中,拓展了三角形内角和的数学知识背景,渗透数学知识之间的联系,有效地避免了新知识的“横空出现”。同时,培养学生的综合素养)
1、读学卡的学习目标、任务目标,做到心里有数。
2、揭题:课件演示什么是三角形的内角和。
3、猜想:三角形的内角和是多少度。
4、验证:
(1)初证:用一副三角板说明直角三角形的内角和是180°。
(2)质疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。
(3)再证:请按学卡提示,拿出学具,选择自己喜欢的方式验证三角形的内角和 是180°(师巡视)
(4)汇报结论(清楚明白的给小组加优秀10分)
5、结论:修改板书,把“?”去掉,写“是”。
6、追问:把两块三角板拼在一起,拼成的大三角形的内角和是多少?说明三角形无论大小它的内角和都是180°(课件演示)
7、看微课感知“伟大的发现”(设计意图:让学生感受自己所做的和帕斯卡发现三角形内角和是180°的过程是一样的,从而培养孩子的自信心和创造力。)
三、知识运用(课件出示练习题,生解答)
1、填空
(1)一个三角形,它的两个内角度数之和是110 ,第三个内角是( ).
(2)一个直角三角形的一个锐角是50,则另一个锐角是( )。
(3)等边三角形的3个内角都是( )。
(4)一个等腰三角形,它的一个底角是50,那么它的顶角是( )。
(5)一个等腰三角形的顶角是60,这个三角形也是( )三角形。
2、判断
(1)一个三角形中最多有两个直角。 ( )
(2)锐角三角形任意两个内角的和大于90。 ( )
(3)有一个角是60的等腰三角形不一定是等边三角形。 ( )
(4)三角形任意两个内角的和都大于第三个内角。 ( )
(5)直角三角形中的两个锐角的和等于90。 ( )
四、拓展探究
根据所学的知识,你能想办法求出四边形、五边形的内角和吗?
1、小组讨论。2、汇报结果。3、课件提示帮助理解。
五、自我评价根据学卡要求给自己评出“优”“良好”“合格”。
六、谈谈自己本节课的收获。
教学反思
今天我讲了《三角形内角和》这部分内容,学生其实通过不同途径已经知道三角形内角和是180°,是不是说这节课的重难点就已经突破了,只要学生能应用知识解决问题就算是达到这节课的教学目标了呢?我想应该好好思考教材背后要传递的东西。
任何规律的发现都要经过一个猜测、验证的过程,不经历这个探究的过程,学生对于这一内容的认识就不深刻,聪明的孩子还会怀疑三角形内角和是180°吗?。因此这个结论必须由实践操作得出结论。所以最终我把本课定为一个实践探究课。
如何开篇点题,是我这次要解决的第一个问题。怎样才能让学生由已知顺利转向对未知的探求,怎样直接转向研究三个角的“和”的问题呢?因此我只设计了三个简单的问题然学生快速进入主题。
本节课的练习的设置也是努力做到有梯度、有趣味、有拓展。从开始的抢答内角和体会三角形内角和跟大小无关、跟形状无关,到已知两个角的度数求第三个角,这些都是巩固。之后的,求拼接两个完全一样的直角三角形后,得到的图形的内角和是多少度,求被剪开的三角形,形成的新图形的内角和是多少度,这些都是对三角形内角和的一次拓展。让学生的认知发生冲突,提出挑战。
给学生一个平台,她会给你一片精彩。通过动手操作来验证内角和是否是180°,学生最容易出现的就是把3个角剪下来拼一拼,个别人可能会想到折的方法。而这节课上有个小姑娘研究的是直角三角形,她的折法很巧妙,将两个锐角折过来,刚好拼成一个直角,这个直角和原来三角形已有的直角就重叠在了一起,两个直角就180°。虽然我知道这样的方法,但是通过试讲,孩子们没有这样的表现,我就没有奢求什么。但是今天的课堂太丰富多元了。这样的方法都出现了让我觉得特别值得肯定。为什么会这样呢?我想还是因为我给了他们足够的时间去思考。当有了空间,孩子才会施展他们的才华。这是我的一大收获。
前边验证时间过多,到练习时间就有些少,特别是求四边形和六边形内角和时,给的时间过短,学生没有充分思维。
总而言之,这次的公开课,给了我一次学习和锻炼的机会。在教案设计时,该怎么样把每一个环节落实到位,怎么样说好每一句话,预设好每一个环节,在教研中听取各位教师的点评,让我有了茅塞顿开的感觉。在此,我衷心感谢数学团队教师对我中肯的评价,感谢他们对我的直言不讳,无私奉献自己的想法,让我在教学中,能够在一个轻松和谐的教学氛围中与学生共同去探讨,去发现,去学习。
三角形优秀教案 篇5
一、教学目标
1.掌握中位线的概念和三角形中位线定理
2.掌握定理“过三角形一边中点且平行另一边的直线平分第三边”
3.能够应用三角形中位线概念及定理进行有关的论证和计算,进一步提高学生的计算能力
4.通过定理证明及一题多解,逐步培养学生的分析问题和解决问题的能力
5.通过一题多解,培养学生对数学的兴趣
二、教学设计
画图测量,猜想讨论,启发引导.
三、重点、难点
1.教学重点:三角形中位线的概论与三角形中位线性质.
2.教学难点:三角形中位线定理的证明.
四、课时安排
1课时
五、教具学具准备
投影仪、胶片、常用画图工具
六、教学步骤
【复习提问】
1.叙述平行线等分线段定理及推论的内容(结合学生的叙述,教师画出草图,结合图形,加以说明).
2.说明定理的证明思路.
3.如图所示,在平行四边形ABCD中,M、N分别为BC、DA中点,AM、CN分别交BD于点E、F,如何证明?
分析:要证三条线段相等,一般情况下证两两线段相等即可.如要证,只要即可.首先证出四边形AMCN是平行四边形,然后用平行线等分线段定理即可证出.
4.什么叫三角形中线?(以上复习用投影仪打出)
【引入新课】
1.三角形中位线:连结三角形两边中点的线段叫做三角形中位线.
(结合三角形中线的定义,让学生明确两者区别,可做一练习,在中,画出中线、中位线)
2.三角形中位线性质
了解了三角形中位线的定义后,我们来研究一下,三角形中位线有什么性质.
如图所示,DE是的一条中位线,如果过D作,交AC于,那么根据平行线等分线段定理推论2,得是AC的中点,可见与DE重合,所以.由此得到:三角形中位线平行于第三边.同样,过D作,且DEFC,所以DE.因此,又得出一个结论,那就是:三角形中位线等于第三边的一半.由此得到三角形中位线定理.
三角形中位线定理:三角形中位城平行于第三边,并且等于它的一半.
应注意的两个问题:①为便于同学对定理能更好的掌握和应用,可引导学生分析此定理的特点,即同一个题设下有两个结论,第一个结论是表明中位线与第三边的位置关系,第二个结论是说明中位线与第三边的数量关系,在应用时可根据需要来选用其中的结论(可以单独用其中结论).②这个定理的证明方法很多,关键在于如何添加辅助线.可以引导学生用不同的方法来证明以活跃学生的思维,开阔学生思路,从而提高分析问题和解决问题的能力.但也应指出,当一个命题有多种证明方法时,要选用比较简捷的方法证明.
由学生讨论,说出几种证明方法,然后教师总结如下图所示(用投影仪演示).
(l)延长DE到F,使,连结CF,由可得ADFC.
(2)延长DE到F,使,利用对角线互相平分的四边形是平行四边形,可得ADFC.
(3)过点C作,与DE延长线交于F,通过证可得ADFC.
上面通过三种不同方法得出ADFC,再由得BDFC,所以四边形DBCF是平行四边形,DFBC,又因DE,所以DE.
(证明过程略)
例求证:顺次连结四边形四条边的中点,所得的四边形是平行四边形.
(由学生根据命题,说出已知、求证)
已知:如图所示,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.
求证:四边形EFGH是平行四边形.‘
分析:因为已知点分别是四边形各边中点,如果连结对角线就可以把四边形分成三角形,这样就可以用三角形中位线定理来证明出四边形EFGH对边的关系,从而证出四边形EFGH是平行四边形.
证明:连结AC.
∴(三角形中位线定理).
同理,
∴GHEF
∴四边形EFGH是平行四边形.
【小结】
1.三角形中位线及三角形中位线与三角形中线的区别.
2.三角形中位线定理及证明思路.
七、布置作业
****
三角形优秀教案 篇6
教材简析:
长方形、正方形、平行四边形、三角形和梯形,都是由三条或三条以上的线段,首尾顺序相接而组成的封闭图形。它们相互之间不仅在特征上有着密切的联系,而且在推导面积计算公式的过程中也有着密切的联系。三角形面积的计算是学生在充分认识了三角形的特征及掌握了长方形、正方形、平行四边形面积计算的基础上学习的,其公式推导的方法与平行四边形面积计算公式的推导方法有相似之处,都是将图形转化成已学过的图形,探索研究未知图形与已学图形之间的联系,从而找出面积的计算方法。几何初步知识的教学是培养学生抽象概括能力、思维能力和建立空间观念的重要途径,学生掌握了三角形面积的计算方法和获取这些知识的能力后,又为进一步学习梯形面积、圆的面积打下了良好的基础。
教学内容:五年级上册教材第84—86页《三角形面积的计算》。
教学目标:
1、认知目标
经历三角形面积计算公式的探索过程,理解三角形的面积计算公式,掌握求三角形面积的计算方法。
2、能力目标
通过学生动手拼摆,渗透旋转、平移的数学思想,引导学生用多种方法推导公式,发散学生的思维,培养学生求异思维的能力。同时学生通过自主探索学习活动,提高实际操作、自主探索能力及运用三角形的面积公式解决实际问题的能力。
3、情感目标
在探索学习活动中,培养实践能力,培养学生主动参与学习活动的意识、合作意识和创新意识,体会数学问题的探索性,并获得积极的情感体验和成功体验。
教学重难点:三角形面积公式推导过程。
教学媒体:多媒体课件
教学准备:完全相同的两个直角三角形、两个锐角三角形、两个钝角三角形。
教学过程:
一、创设情景,引入探索
师:在讲课之前,首先,谁愿意给大家说一说,你有什么爱好?
师:老师特别喜欢摄影,今天特意带来几幅作品,想看看吗?好,一起来看看!(点击课件出现吴忠城区风光图。最后画面定格在体育馆的花坛中)为了美化环境,园林工人要在体育馆的附近的长方形的空地上设计一个花坛,打算分成两个相等的绿化地,一块种上杜鹃花,一块种上月季花,那么怎么设计这块地呢?(学生可能有三种设计,一种是将空地纵分,一种是横着分,还有斜线分成两个三角形)最终园林工人采纳了第三种方案,园林工人要按面积来买花种的数量,谁来说说这一块花坛的面积怎么来算?
那么如果遇到花坛形状是这样普通的三角形,面积怎么计算呢?我们今天一起来研究,大家有兴趣吗?(教师板书课题:三角形面积的计算)
二、 自主探索,合作交流。
1、引导学生看大屏幕(出示不同类型的三角形),提出思考:谁来说说你看到了什么?
2、拿出三角形模型,让学生小组合作拼一拼,摆一摆,说说你能发现什么?三角形的面积怎么计算呢?
3、谈话启思。
请大
4、操作探索。
(1)小组合作探索、操作。
(2)小组交流
5、开始现场发布会,展示学生的拼摆情况。
三、尝试练习
四、实践运用,拓展创新。
下图中哪个三角形的面积与画阴影三角形的面积相等?为什么?
你能在图中再画一个与画阴影的三角形面积相等的三角形吗?试试看?
五、质疑调节,总结延伸。
师:通过这节课的探索学习,你有什么收获?
六、布置作业,课后探索。
三角形优秀教案 篇7
教学目标:
1.通过动手操作和观察比较,使学生认识三角形,知道三角形的特性及三角形高和底的含义,会在三角形内画高。
2.通过实验,使学生知道三角形的稳定性及其在生活中的应用。
3.培养学生观察、操作的能力和应用数学知识解决实际问题的能力。
4.体验数学与生活的联系,培养学生学习数学的兴趣。
教具准备:师准备木条(或硬纸条)钉成的三角形、学习卡
教学过程:
一、联系生活,情境导入
1、谈话导入,板书课题。
2、课件展示课本第80页情境图,让学生指出图上的三角形。
3、让学生讨论说一说:生活中还有哪些物体上有三角形。
二、实验解疑,探索特性
1、三角形在生活中有这么广泛的运用,究竟它有什么特点?下面我们来变个小魔术。
2、生上台前拉教具:拉一拉,你有什么发现?
3、实验结果:三角形具有稳定性。
4、请学生举出生活中应用三角形稳定性的例子。(如:自行车三角架、交通警示牌等)
5、出示教材第81页插图:图中哪儿有三角形?它具有什么作用?
三、操作感知,理解概念
1、4人为小组画三角形,理解含义。
2、展示学生画的三角形,组织交流:三角形有什么特点?
3、生板演完成习题:三角形有()条边,()个角,()个顶点。(生齐读)
4、概括定义:大家对三角形的特征有了一定的认识,能不能用自己的话说一说什么样的图形叫三角形?(指名说)
5、辨一辨:(出示幻灯片)它是三角形吗?说说你的理由。
6、师小结:由三条线段围成的图形叫三角形。
四、画三角形的底和高。
1、出示图形:看这是老师课前画的三角形,大家仔细观察老师画的与你们画的有什么不同。
2、生观察指出,师引导出高和底的概念,以及三角形的字母表示形式。
3、学生分组讨论练习画三角形的高。
4、展示学生作品:说说你是如何画的。
5、幻灯片演示画高过程。
6、学生板演画高。
五、总结
1、师:通过这节课的学习,我们懂得了三角形具有——稳定性,还知道了怎样画三角形的——高。
2、巩固练习。(课件演示学生修椅子:说说为什么要这样修?)
三角形优秀教案 篇8
教学内容:
三角形面积公式的推导和面积的计算。课本P47--P49。练习十1-3题。
教学目标:
1、使学生理解三角形的面积正好是它等底等高的平行四边形面积的一半,引导学生推导出三角形面积计算公式。
2、使学生掌握三角形面积的计算公式,并能结合实际正确选择条件,应用公式计算三角形面积。
3、通过图形的割补、剪拼,渗透图形变化的数学思考方法,并培养学生的动手操作能力。
教学准备:
多媒体课件。学生准备剪拼的还有平行四边形、长方形等三个图形与三对三角形、剪刀等。
教学过程:
一、复习旧知,建立基础。
昨天我们学习了平行四边形的面积计算,请同学们回忆一下平行四边形的面积公式我们是怎样推导出来的?
学生回答,教师小结。平行四边形的面积公式我们是通过沿高剪割、平移的方法把平行四边形转化成了长方形后推导出来的。(演示推导过程)这样我们就把要学习的新知识转化成了已会的旧知识。(板书:转化)
我们今天也要应用这个思想来学习新知识。
二、导入新课,揭示课题
师:,这堂课我们学习"三角形面积的计算"(板书)。
三、三角形面积公式的推导
1、用数方格的方法求三角形的面积
多媒体屏幕出示3个三角形。放在边长为1厘米的正方形方格图中。每个小方格就是多少面积?
(1)、分别说说这三个三角形是什么三角形?
(2)、请你用数方格的方法求出这3个三角形的面积各是多少平方厘米(不满一个的,都按半格计算,小组里分一下工,每人数一种。看哪个小组数的最快)
边数边思考:
(1)。如果以水平方向的边为它的底,那么高在哪里?底和高分别是多少?
(2)。并且请你根据所得的结果猜一猜三角形的面积可能与什么有关?有怎样的关系呢?
思考题交流。
师:那么三角形能不能转化成我们学过的图形来推导出它的面积计算公式呢?你想转化成怎样的图形?
1、尝试操作
每个学生放有九个图形,其中六个三角形。请你剪一剪,或者拼一拼。看看三角形与我们以前学过的图形有没有关系?有怎样的关系?
要求:每个人做一次剪的实验、做一次拼的实验,小组长进行一下分工。
交流:通过剪一剪,或者拼一拼,你发现了什么?汇报剪的情况。
(1) 请学生把自己剪的图展示在投影仪上。说说你是怎样剪的?发现了什么?
根据剪的情况,谁能用一句话来概括一下?
(2)交流拼的情况,说说你是怎样拼的?通过拼一拼,你又发现了什么?
展示在投影仪上。根据拼的情况,谁能用一句话来概括一下?
三角形优秀教案 篇9
【教材分析】
这一节课主要学习等腰三角形“等边对等角”及“底边上的高、底边上的中线、顶角的平分线互相重合”的性质。本节内容既是前面知识的深化和应用,又是下节学习等腰三角形和等边三角形判别的预备知识,还是证明角相等、线段相等及两条直线互相垂直的'依据。学好它可以为将来初三解决代数、几何综合题打下良好的基础。它在理论上有这样重要的地位,并在实际生活中也有广泛的应用,因此这节课的教学显得相当重要,起着承前启后的作用。
【学情分析】
在此之前,学生已学习了轴对称图形,这为过渡到本节的学习起着铺垫作用。初二学生心理和认知发展规律要求在教学中要充分调动他们的激情,他们不喜欢鼓噪无味的数学课堂。根据认知理论和心理学的基本原理,学生对所学知识的掌握是通过感知阶段、理解阶段、巩固(记忆)阶段、应用(迁移)阶段的发展实现的,知识的掌握如此,思维能力的培养也是如此,也应遵循认知迁移的规律,逐极展开。
【教学目标】
1、知识和技能目标:
能够探究,归纳,验证等腰三角形的性质,并学会应用等腰三角形的性质。
2.过程和方法目标:
经历剪纸,折纸等探究活动,进一步认识等腰三角形的定义和性质,了解等腰三角形是轴对称图形。
3.情感和价值目标:
培养学生的观察能力,激发学生的好奇心和求知欲,培养学习的自信心。
【教学重点和难点】
1.教学重点
等腰三角形的性质及应用
2.教学难点
等腰三角形性质的建立
教学过程
三角形优秀教案 篇10
数学三角形的面积练习题
一、填空。
1、一个三角形的面积是25平方厘米,和它等底等高的平行四边形的面积是平方厘米。
2、一个平行四边形的底是6厘米,高是14厘米,它的面积是()平方厘米,与它等底等高的三角形面积是()平方厘米。
3、一个三角形的面积是20平方厘米,它的高是8厘米,底是()厘米。
4、直角三角形的两条直角边长分别为3厘米和4厘米,斜边为5厘米,这个直角三角形面积是()平方厘米。
5、一个三角形与一个平行四边形的底和面积都相等,平行四边形的高是16厘米,三角形的高是( )厘米。
6、一个等腰直角三角形的直角边是10厘米,它的面积是( )平方厘米。
二、判断题。
1、平行四边形面积等于长方形面积。()
2、等底等高的三角形可拼成一个平行四边形。()
3、如果两个三角形面积相等,那么它们一定等底等高。()
三、选择题。将正确答案的序号填在括号里。
1、将一个长方形拉成一个平行四边形(四条边长度不变),它的。面积()。
A.比原来小B.比原来大C.与原来相等
2、平行四边形的面积是44cm2,与它等底等高的三角形的面积是()cm2
A、44B、22C、88
四、解决问题。
1、一块三角形的地的面积是360平方米,底是50米,高是多少?
2、一种直角三角形的小旗,一条直角边长15厘米,另一条直角边长24厘米,做150面这样的小旗,至少要用红布多少平方米?
3、三角形广告牌,底25分米,高20分米。如果每平方米刷漆2千克,那么将这个广告牌正反两面刷漆,购买18千克油漆够不够?
4、大白菜地的形状是三角形,底80米,高60米,如果每棵大白菜占0.2平方米,这地可种大白菜多少棵?
三角形内角和教案10篇
三角形内角和教案(篇1)
说教材
《三角形的内角和》是人教版小学数学四年级下册第五单元的内容。“三角形的内角和”是三角形的一个重要性质,学好它有助于学生理解三角形内角之间的关系,也是进一步学习几何的根底。本节课是在学生学过角的度量、三角形的特征和分类等学问的根底上进展教学的,学生已经具备肯定的关于三角形的熟悉的直接阅历,也已具备了一些相应的三角形学问和技能,这为感受、理解、抽象“三角形的内角和”的规律,打下了坚实的根底。
说学情
一节胜利的课,不仅在于对教材的把握,还有对学生的讨论。四年级的学生正处于详细形象思维为主导的阶段,他们解决问题的力量很强,但自控力稍差。因此本节课将注意引导学生动脑思索,动手实践,打破以学问传授为主的传统数学课堂模式,采纳敏捷多样的教学方法,牢牢将学生的留意力集中在课堂中。
说教学目标
依据新课程的要求及教材的编写特点,充分考虑到四年级学生的思维水平,我确立如下三维教学目标:
学问与技能目标:通过量、剪、拼等活动发觉、证明三角形内角和是180°,并会应用这一学问解决生活中简洁的实际问题。
过程与方法目标:经受观看、猜测、验证的过程,提升自身动手操作及推理、归纳总结的力量。
情感态度价值观目标:在参加学习的过程中,感受数学的魅力,体验胜利的喜悦,激发学习数学的兴趣。
说教学重难点
依据教学目标,我确定了本节课的重点和难点。重点为三角形内角和定理,而三角形内角和定理推理的过程为本节课的`难点。
说教法
为了更好地突出重点,突破难点,坚持“以学生为主体,以教师为主导”的原则,依据学生的心理进展规律,我将采纳启发式教学法,引导学生利用已有的学问阅历去探究新知,并在探究过程中把握本节重难点,同时辅之以多媒体教学设备,直观地呈现教学内容。
我将引导学生采纳自主探究,合作沟通的方式进展学习,通过动手动脑动口来把握本节课的教学重难点。
说教学内容
为了更好地完本钱节课的教学内容,突出重点突破难点,我设计了以下几个教学环节:
(一)创设情境,导入新课
为了引入新课,调动学生的学习兴趣,一开头上课我便用多媒体播放有关三角形内角和情境视频:在图形的王国中,有一天,三角形家族里为“三角形内角和的大小”爆发了一场剧烈的争吵。钝角三角形说“我的钝角大,我的内角和肯定比你们的内角和大”。锐角三角形也不示弱“你虽然有一个钝角,可是其它两个角都很小,而我的三个角都不是很小,所以我的内角和比你大”。直角三角形说“别争了,我们的内角和是一样大的,由于三角形的内角和是180°”。依据视频中三角形的对话,顺势引出题目——三角形的内角和。
多媒体课件展现有关三角形内角和的内容,激发学生深厚的学习兴趣和求知欲望,快速的进入学习高潮。
(二)自主探究,感受新知
首先让学生画几个不同类型的三角形。然后同桌相互量一量,算一算,三角形3个内角的和各是多少度?通过测量,学生可以发觉三角形的内角和是180°。
接着我会提出一个问题是不是全部的三角形的内角和都是180°,如何进展验证你的结论呢?接下来我会让学生分小组争论,针对学生消失的问题,我赐予指导,争论过后,请同学汇报,鼓舞学生用自己的语言表达,无论学生答复的全面与否,都赐予积极的评价,其他同学仔细倾听后做出推断,进展补充,提高学生的留意力。
通过小组之间的争论,引导学生采纳剪拼的方法进展验证,先把一个三角形的三个角剪下来,再拼一拼,拼成一个平角。
最终引导学生总结出三角形的内角和是180°。
以上教学活动采纳让学生主动探究、小组合作沟通的学习方式,使学生充分经受数学学习的全过程,表达以生为本的教学理念。学生在全程参加中不仅把握新知进展力量培育的推理力量,又熬炼学生的语言表达力量和沟通力量,同时让学生体验数学与生活的严密联系。
(三)稳固练习,强化学问
我利用小学生好胜心强的特点,以闯关的形式将课本的习题呈现在多媒体上来稳固本节课所学的学问,这样设计能增加数学的趣味性,激发学生的学习兴趣,并查看他们学问的把握状况。
(四)课堂小结
我将此环节分为两局部。第一局部是以学生为主体的学问性总结,让学生畅谈本节课的感受和收获,准时了解学生的学习状况和情感体验。其次局部是以教师为主体的情感性总结,我会对学生的表现予以表扬和鼓励,激发学生的学习兴趣,增加学习自信念。
(五)布置作业
针对学生的年龄特点,我会让学生在课下和家长沟通今日的收获和感受,从而让家长了解学生在校的学习状况,并促进学生与家长的沟通。
说板书设计
一个好的板书应当是简洁明白干净美观,重难点突出,能够对学生理解本节学问有肯定的强化作用,因此我的板书是这样设计的。
三角形内角和教案(篇2)
【教材分析】:
新课标把三角形的内角和作为第二学段中三角形的一个重要组成部分。本课是安排在三角形的特性及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。教材所呈现的内容,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,安排了量一量、算一算和剪一剪、拼一拼两个实验操作活动,意图使学生在动手操作、合作交流中发现并形成结论。
【教学目标】
知识与技能
1.理解和掌握三角形的内角和是180度。
2.运用三角形的内角和的知识解决实际问题。
过程与方法
经历三角形的内角和的探究过程,体验“发现——验证——应用”的学习模式。
情感态度与价值观
在学习活动中,渗透探究知识的方法,提高学生学习的能力,培养学生的创新精神和实践能力。
【教学重点】
重点:理解和掌握三角形的内角和是180度。
突破方法:引导学生用测量或剪拼的方法探究三角形的内角和。合理猜想,测量验证。
【教学难点】
用三角形的内角和解决实际问题。
突破方法:推理分析计算。运用推理,正确计算。
教法:质疑
【教学方法】
引导,演示讲解。
学法:实践操作,小组合作。
【教学准备】:
多媒体课件,锐角,直角,钝角三角形的硬纸片,剪刀。
【教学时间】
一课时
【教学过程】
一.创设情境,引入新课
师:同学们,我们这俩天学习了三角形的分类,通过对角的分类,我们能够分成几类三角形?
生:三类,分别为锐角三角形,直角三角形,钝角三角形。
师:嗯,真好,那么对边的分类呢?
生:俩类,分别为等腰三角形,等边三角形。
师:老师想让同学们帮老师画一个三角形,能做到吗?
生:能。
师:请听要求,画一个有一个角是直角的三角形,开始。(学生动手操作)
师:再来一个可以吗?请听要求,画一个有俩个角是直角的三角形,开始。
生:不能画,因为当俩个角是90度的时候,俩个顶点在一条线上,不能组成封闭图形。
师:回答的真好,那么为什么会出现这种情况呢?是因为三角形中的角而引起的,那么同学们想不想知道其中的秘密呢?
生:想。
师:好,那么我们今天就一起来学习“三角形的内角和”(出示板书)
(设计意图:通过学生的动手操作,发现问题所在,这样更能调动学生的学习兴趣,为了更好的学习这节课做铺垫.)
二.探究新知
师:昨天呢,老师让同学们一人做一个自己喜欢的三角形,请同学们拿出来,看一看你们做的是什么样子的三角形。
生1:锐角三角形。
生2:直角三角形。
生3:钝角三角形。
师:嗯,我们在上个星期学习了三角形的各部分名称,谁能帮我告诉下同学们,角在哪里呢?
生:里面的三个角,可以用角1,角2,角3来表示。
师:嗯,这三个角我们也可以说成是三角形的内角,好了,今天我们既然学习三角形的内角和,也就是求成这三个角的度数和,你们猜一猜三角形内角和的度数是多少呢?
生:三角形的内角和是180度。
师:那么我们能不能一起用一些好的办法来验证一下呢?
生1:我们可以用量角器分别量出这三个内角的度数,然后再加在一起就可以求出三角形内角的和了。
师:还有其他的办法吗?
生2:我们可以用剪子剪下三个角,然后把它们拼在一起,看看这三个角拼在一起之后能够呈现出什么样子的角。
生3:我可以用折的方法,把三个角的度数折在一起。
师:同学们说的真好,既然有这么多的方法,到底哪个方法好呢?我们一起来研究一下,我把全班分成俩个小组,一队用量的方法,一队用拼的方法,看看哪个小组做的又对又快,开始。
(设计意图:通过学生的动手操作,合作交流,真正的把课堂还给学生,让学生成为学习的主体,教师适时引导,突出学生的学习的能力与价值。)
三.总结任意三角形的内角和是180度并做适当练习。
四.板书设计
三角形的内角和
量一量锐角三角形:75度+48度+58度=181度
直角三角形:90度+45度+45度=180度
钝角三角形:120度+38度+22度=180度
拼一拼图形呈现
折一折图形呈现
三角形内角和教案(篇3)
【教材内容】
北京市义务教育课程改革实验教材(北京版)第九册数学
【教材分析】
《三角形内角和》是北京市义务教育课程改革实验教材(北京版)第九册第三单元的内容,属于空间与图形的范畴,是在学生已经掌握了三角形的稳定性和三角形的三边关系相关知识后对三角形的进一步研究,探索三角形的内角和等于大小的三角形进行度量,再运用拼、折、剪等方法发现三角形的内角和是180°。让学生在自主探索中发现三角形的又一特性,更加深入的培养了学生的空间观念。
【学生分析】
在四年级学生已经掌握了角的概念、角的分类和角的度量等知识。在本课之前,学生又掌握了三角形的稳定性研究了三角形的分类。这些都为进一步研究三角形内角和作了知识储备和心理准备,为本课内容的教学作了铺垫。三角形的内角和是三角形的一个重要性质。它有助于理解三角形的三个内角之间的关系,是进一步学习、研究几何问题的基础。
【教学目标】
拼、折、剪等方法探索和发现三角形的内角和等于180°掌握并会应用这一规律解决实际的问题。
争辩、操作、推理发展学生动手操作、观察比较和抽象概括的能力。
3、使学生掌握由特殊到一般的逻辑思辨方法和先猜想后研究问题的方法。
【教学重点】
让学生经历“三角形内角和是180度”这一知识的形成发展和应用的全过程。
【教学难点】
能利用学到的知识进行合情的推理。
【教具学具准备】
课件、各种各样的直角三角形、长方形、剪刀、量角器、数学纸
【教学过程】
一、学具三角板,引入新课
,问:这是咱们同学非常熟悉的一种学习工具,是什么呀?(三角板)它们的外形是什么形状的?(三角形)(课件:抽象出三角形)
3、认识内角
((板书:三角形内角)∠1就叫做三角形的什么?这两条边夹的角∠2呢?∠3呢?
(这个呢?(三个)
(设计意图:由学生最熟悉的三角板引入新课,激发学生兴趣的同时为后面的学习做准备)
二、动手操作,探索新知
(一)直角三角形内角和
ⅰ、特殊直角三角形内角和
。
2、观察这两个三角形的度数,你有什么发现?
生
生2:我还发现他们内角加起来是180度。师:他真会观察,你发现了吗?快算一算是不是他说的那样?
(课件):(
那么另一个三角板的三个内角的总度数是多少?
(生回答,师课件:(
5、这个直角三角形的内角和是多少度?另一个呢?
赶快在你的数学纸上画一个平角。
(师出示一个平角)问:平角是什么样的?
7、师述:角的两边形成一条直线就是平角。也就是180度,哦,这两个直角三角形的内角和就组成这样的一个角呀。
ⅱ、一般直角三角形内角和
1、老师还为你们准备了各种各样的直角三角形,快拿出来看看。
2、刚才的那两个直角三角形的内角和是180度,你们手中的直角三角形的内角和是多少度呢?老师还为你们准备了一些学具,你能充分地利用这些学具,想办法来研究直角三角形的内角和是多少度吗?下面我们以小组为单位来研究,注意小组同学要明确分工可以一个人填表,另外的人一起动手实验看一看哪一组想出研究方法最多。
(汇报
哪个组愿意把你们的研究成果向大家展示?每个小组派代表发言。(在实物展台上演示)
三角形的种类
验证方法
验证结果
*“量一量”的方法:
板书:有一点误差的度数
*“剪一剪”的方法:
我们在剪的时候要注意什么?剪完之后怎样拼?拼成的是什么?你怎么知道是平角?(提示:可以在我们画的平角上拼)(课件展示)
现在我们也用这种方法试一试,看能不能拼成平角?(小组实验)
你们的直角三角形的内角和拼成的是平角吗?也就是内角和是多少度?
还有其他方法吗?
*“折一折”的方法:
预设:①生:我是折的。师:怎样折的?你能给大家演示吗?
学生演示(课件:折的过程)
②学生没有说出来,师:你们看老师还有一种方法请看:(课件:折的过程)其实折的方法和剪、撕的道理是一样的,最后都是把三个内角拼成平角。(板书:折)
*推理:
你们有用长方形来研究直角三角形内角和度数的吗?(课件:长方形)快想一想用长方形怎样去研究?(课件:长方形验证的过程)
这种方法就叫做推理,一般到中学以后我们经常会用到。(板书:推理)
3、小结
(刚才我们在测量的时候为什么会出现179度183度呢?看来只要是测量不可避免的会产生误差。
(
(设计意图:引导学生通过量、拼、推理等实践操作活动,自主探究直角三角形的内角和是
(二)、锐角三角形、钝角三角形的内角和
1、请你们任意画一个钝角三角形,一个锐角三角形
我们是用什么方法来研究的?
3、学生模仿老师操作说理
4、由此我们得到了锐角三角形的内角和是多少度?钝角三角形的内角和呢?我们就可以说所有三角形的内角和都是180度。
师:这也是三角形的一个特性,现在你对三角形的这一特性有疑问吗?如果没有的话请你用自信、肯定的语气读一读(板书:三角形的内角和是。
(设计意图:引导学生通过直角三角形的内角和是
三、巩固新知,拓展应用
我们就用三角形的这一特性来解决一些问题
1、两个三角形拼成大三角形
(1)每个三角形的内角和都是少度?
(它的内角和是多少度?(这时学生答案又出现了师:究竟谁对呢
2、一个三角形去掉一部分
(1)这是一个三角形,他的内角和是多少度?我从中剪去一个三角形他的内角和是多少度?
再剪去一个三角形呢?(课件演示)
你们看这两个三角形他们的大小、形状都怎么样?但内角和都是180度,看来三角形的内角和的度数和他的大小形状都无关。
(
你能利用我们三角形的内角和是180度来研究这个四边形的内角和是多少度吗?
(3)如果五边形,你还能求出他的度数吗?
(设计意图:充分利用多媒体资源帮助学生理解、消化、新的知识,能够灵活的运用三角形的内角和等于
四、总结评价、延伸知识
通过这节课的学习研究你掌握了哪些知识?我们是怎样研究的呢?
师:先研究的是特殊直角三角形的内角和是拼等方法得到了直角三角形的内角和是180度,再利用直角三角形通过推理研究出锐角三角形和钝角三角形的内角和是180度。
(设计意图:帮助学生梳理本节课的知识脉络。)
三角形内角和教案(篇4)
三角形的内角和
各位评委老师,大家好,我是XX号考生,我今天说课的题目是《三角形的内角和》。下面我将从教材分析,学情分析,教法,学法,教学过程,及板书设计六个方面展开我的说课。
一》说教材。一切教学设计都基于教材,首先我来说一下教材分析,本节课是人教版八年级上册第11章第二节的内容,本节课研究三角形的内角和定理,它是小学学习的三角形有关知识的拓展,并为以后学习三角形的其他知识奠定了基础,因此本节课的学习是十分重要的。由以上分析,结合新课标的要求,我确定了以下三维教学目标:1.知识与技能目标:掌握三角形内角和定理的证明及简单应用。2.过程与方法目标:通过对三角形内角和定理的探索证明,培养学生的动手操作能力和独立思考的能力。3.情感态度与价值观目标:经历三角形内角和定理的探索过程,增强学习数学的兴趣,初步认识数学与人类的联系,体验数学活动充满着探索与研究。
根据以上对教学目标的分析,我将本节课的教学重点确定为:证明三角形内角和定理。教学难点:三角形内角和定理的应用。
二》说学情:作为一名老师,不仅要对教材进行分析,还要对学生的情况有清晰明了的掌握,这样才能做到因材施教,有的放矢。接下来,我将对学情进行分析:初中学生的思维已由形象思维向抽象思维发展,学生的观察力,记忆力,想象力也有一定的发展,但这一时期的学生活泼好动,记忆力容易分散,并且对知识的概括和应用也有一定的欠缺,这都是我在教学中应考虑的问题。
三》说教法:基于以上对教材和学情的分析,结合本节课的特点,我将采用以下教学方法:在教法上,采用引导发现法和练习法,通过教师的引导,启发调动学生的积极性,让学生在课堂上多活动,多观察,主动参与到整个教学活动中来。在学法上,学生们合作交流,自主学习,这种学习方式,有助于发展学生独立分析和探究的意识,培养学生养成良好的学习习惯。
四》说教学过程:关于本节课的教学过程,我从以下几方面入手:1.情境导入,激发兴趣。
我会问学生:同学们,你们听过内角三兄弟之争的故事吗?有的回答有,有的回答没有,我会说:“那今天我来给大家讲一讲吧。在一个直角三角形的家里住着内角三兄弟,平时他们三兄弟非常团结,可是有一天,老二突然不高兴,发起脾气来,他指着老大说:你凭什么度数最大,我也要和你一样大!“不行啊!老大说,“这是不可能的,否则我们就围不成一个家了。”“为什么呢?”老二很纳闷,同学们,你们知道其中的道理吗?设置悬疑,自然导入三角形内角和的学习,通过这样的设计,可以在一开始就吸引学生的注意力,激发学生的探求欲望。
2.合作交流,探索新知
在这一环节,首先由学生自己在纸上画一个三角形(板书画三角形),并将内角剪下,然后我引导学生 :试着拼一拼,看看会有发展思维的灵活性,创造性。然后,我会设问:从刚才的拼图过程中是不是剪下的内角可以拼成一个平角啊?那这说明什么呢?由学生举手回答:三角形的内角和为180度。为调动学生的积极性,我会对学生的回答给予肯定,然后我会想学生说明这种操作存有误差,需要我们给予证明,接下来由学生分组讨论证明方法,并交流方法,这样有助于丰富学生的思维,增强学生的合作意识,然后我会引导学生分析:首先过点A做边BC的平行线进而出现内错角角1=角B,角2=角C,然后请同学得出角1+角2+角CBA=180度,所以角A+B+C=180度,这样可以帮助学生更好的理解三角形内角和定理,培养浓厚的学习兴趣。接下来,仍借助多媒体出示例题,通过例题的分析,让学生体会分析问题的基本方法,进一步加深对定理的认识。
3.巩固练习,强化新知。对新知识的学习需要一定的练习来巩固,为此我借助多媒体设置了一些有层次的练习,通过这些练习,加深了对知识的理解,培养了学生思维的广阔性。
4.归纳小结,畅所欲言。
为了了解学生对本节课知识的掌握程度,我会请学生总结“本节课你的收获是什么呢?”并请学生提出存有疑问的地方,大家在解决问题的过程中继续巩固三角形内角和定理。
5.布置作业。
在布置作业时我注重了分层练习,设置了必做题和选做题,必做题为课本76页第3,5题,通过这些题目,继续巩固三角形内角和定理,选做题:继续生活中有关三角形的实例或趣味故事?这样既开阔了学生的视野,有更好的将生活与数学相结合。
6.说板书》
最后说一下我的板书设计,为帮助学生清晰明了的掌握本节知识,掌握重点,突破难点,我的板书设计如下:(看黑板)利用图形,符号表示更直观,形象,便于记忆。
我的说课到此结束,谢谢大家!
三角形内角和教案(篇5)
(一)知识与技能:掌握“三角形内角和定理”的证明及其简单应用,让学生探索发现三角形的内角和是180。
(二)过程与方法:通过量算、撕拼、折拼等活动培养学生观察、操作、探究、归纳、概括、反思等能力和初步的空间想象力,感受数学的转化思想;发展学生的空间观念和初步的逻辑思维能力;能运用所学知识解决简单的问题,训练学生对所学知识的运用能力。
(三)情感态度与价值观:
1、渗透转化迁移思想,培养学生大胆质疑的勇气和严谨科学的精神,及与他人合作交流的意识。
2、让学生切实感受到从实验中得到的现象,经过简单的推理证明以后可以成为我们的一般公理,初步感受从个别到一般的思维过程。
教学重点:
让学生经历“三角形内角和是180度”这一知识的形成、发展和应用的全过程;知道三角形的内角和是180度并且能应用。
教学难点:
三角形内角和是180度的探索和验证过程。
3、 认识三角形的内角,猜测内角和。
60°+30°+90°=180°
45°+45°+90°=180°
(二)操作、验证完成一般三角形的内角和是180度的.证明。
其他类。
3、 小结:
(课件演示)刚才同学们用量、折、剪、拼、计算、推理等这么多巧妙的方法得出,无论是什么样的三角形的内角和都是180°,你们真不错,让我们带着自豪的语气大声地读出“三角形的内角和是180°”
4、 知识升华:
大小不一的三角形的内角和各是多少?
一个三角形分成两个三角形,他们的内角和各是多少?
1、 为什么不能画有两个直角的三角形?哪能画含有两个钝角的三角形吗?含有两个锐角呢?
2、 老师不小心把墨水倒在了三角形上,你知道它的度数吗?
你对自己的评价。
结束语:
三角形是一棵大树,内家和只是它的一片叶子;
数学是一棵大树,三角形只是它的一片叶子;
生活是一棵大树,数学只是它的一片叶子,
让我们欣赏着、享受着三角形为生活添得美!
三角形内角和教案(篇6)
《义务教育课程标准实验教科书数学(人教版)》四年级下册第五单元第85页
1、透过“量一量”,“算一算”,“拼一拼”,“折一折”的方法,让学生推理归纳出三角形内角和是180°,并能应用这一知识解决一些简单问题。
2、透过把三角形的内角和转化为平角进行探究实验,渗透“转化”的数学思想.
3、透过数学活动使学生获得成功的体验,增强自信心.培养学生的创新意识,探索精神和实践潜力.
多媒体课件、各类三角形、长方形、正方形、量角器、剪刀、固体胶、活动记录表等。
此刻正是春暖花开,万物复苏的季节。在这完美的日子里,我们相聚在那里,刘老师十分高兴认识大家,你看把蝴蝶也引来了。(课件)
师:请大家仔细观察,它把这条绳子围成了什么三角形?
师:请大家仔细想一想,这三个三角形在围的过程中什么变了?什么没变?
师:这节课我们一齐来研究三角形的内角和。(板书:三角形的内角和)
(师手拿一个三角形)这个三角形的内角在哪?谁来指给大家看。一个三角形有几个内角啊?
每人从学具筐中任选一个三角形,指出它的内角。
师:大家明白了什么是三角形的内角,那什么叫“内角和”呢?
(1)师拿一个锐角三角形问:大家猜一猜这个锐角三角形的内角和是多少度?有不同想法吗?
(2)直角三角形与钝角三角形同上。
(3)师:看来大家都认为三角形的内角和是180o,但这仅仅是我们的一种猜测,有了猜测就能够下结论了吗?我们还需要进一步的验证.
刘老师为每个小组准备了一个学具筐,里面有不同的学习材料,或许这些材料会对你有所启发,帮忙你想出好办法。每人此刻都认真的想一想,你打算怎样来验证三角形的内角和不是180o呢?
经过独立思考和动手操作,每人都有了自己的验证方法,先在小组内交流各自的验证方法。
师:来吧孩子们,该到全班交流的时候了.谁愿意先把自己的方法与大家一齐分享。
学生汇报测量结果。
师:刚才大家都认为三角形的内角和是180度,但量的结果有的是180度,有的不是180度,这是怎样原因呢?
师小结:看来采用测量的方法会有误差,学习数学要用这种严谨的态度来对待,咱们再看看别的方法。
请用撕拼方法的学生上台展示撕拼的过程。
师:你是怎样想到把三角形撕下来拼成一个平角来验证的呢?
师评价:你把本不在一齐的三个角,透过移动位置,把它转化成一个平角来验证,还用了转化的思想,你真了不起。
如果学生出现把两个完全相同的直角三角形拼成一个长方形来验证。
师追问:这种方法真的很简单,但它只能证明哪一类的三角形呢?
师:不同的方法,同样的精彩,大家发现了吗?无论是撕一撕、折一折、还是拼一拼,这些方法都有异曲同工之妙,那就是你们都用了转化的策略。我发现你们都有数学家的头脑,明白吗?数学家在证明这一猜想时,也用了转化的思想,一齐来看(看课件)
师:善于数学发现和思考使帕斯卡走上了成功的道路。这节课才10岁的我们也用自己的智慧发现了帕斯卡12岁时的数学发现,我们同样了不起,刘老师为大家感到骄傲。
明白了这个结论能够帮忙我们解决那些问题呢?
1、把两个小三角形拼成一个大三角形,大三角形的内角和是多少度?为什么?
师:当把两个三角形拼在一齐时,消失了两个内角,正好是180°,所以大三角形的内角和还是180度,如果把三角形分成两个小三角形呢?
在一个三角形ABC中,已知A45°,B85o,求с的度数。
在一个直角三角形中,已知с52o,求Α的度数。
爸爸给小红买了一个等腰三角形的风筝。它的一个底角是70°,它的顶角是多少度?
3、思考:
你能画出一个有两个直角或两个钝角的三角形吗?为什么?
这天我们收获的不仅仅仅是知识上的,还有情感上的,思想方法上的,还认识了一位了不起的科学家帕斯卡,因为他的好奇与不满足让我们记住了他。相信在座的每一位只要你拥有善于发现的眼睛,勤于思考的大脑,勇于实践的双手,将来某一天你也会像他一样伟大。
【总评】整节课刘老师透过巧妙的设计,让学生经历了观察、发现、猜测、验证、归纳、概括等数学活动,切实体现了新课程的核心理念“以学生为本,以学生的发展为本”。具体体此刻以下几个方面:
1、精心设计学习活动,让每一个学生经历知识构成的过程。刘老师为学生带给了丰富的结构化的学习材料,有各类的三角形、相同的三角形等,促使学生人人动手、人人思考,引导学生在独立思考的基础上进行合作与交流。在这一过程中发展学生的动手操作潜力、推理归纳潜力,实现学生对知识的主动建构。
2、立足长远,注重长效,不仅仅关注知识和潜力目标的落实,更注重数学思想方法的渗透。在验证三角形内角和是180度的过程中,教师有意识地引导学生认识到撕拼的验证方法其实是把三角形的内角和转化成了平角,使学生对“转化”的数学思想有所感悟;在对测量的结果出现不同答案的交流过程中,使学生认识到测量时会出现误差,从而培养学生严谨的、科学的学习态度和探究精神。
3、遵循教材,不唯教材。本节课上,刘老师延伸了教材,介绍了科学验证三角形内角和的方法以及这一结论的发现者帕斯卡的故事,拓宽了学生的知识面,把学生的学习置于更广阔的数学文化背景中,激起了学生对数学的强烈兴趣,激发了学生用心向上的学习情感。
整节课的学习资料,突出了数学学科的实质,抓住了数学的本质,使学生在动手“做”数学的过程中寻求成功,在成功中享受快乐,在快乐中不断超越,在超越中体验成长.
三角形内角和教案(篇7)
教学要求
1、通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。
2、能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。
3、培养学生动手动脑及分析推理能力。
教学重点
三角形的内角和是180°的规律。
教学难点
使学生理解三角形的内角和是180°这一规律。
教学用具
每个学生准备锐角三角形、直角三角形、钝角三角形纸片各一张,量角器。
教学过程:
一、出示预习提纲
1、三角形按角的不同可以分成哪几类?
2、一个平角是多少度?1个平角等于几个直角?
3、如图,已知∠1=35°,∠2=75°,求∠3的度数。
二、展示汇报交流
1、投影出示一组三角形:(锐角三角形、钝角三角形、直角三角形)。三角形有几个角?老师指出:三角形的这三个角,就叫做三角形的三个内角。(板书:内角)
2、三角形三个内角的度数和叫做三角形的内角和。(板书课题:三角形的内角和)今天我们一起来研究三角形的内角和有什么规律。
3、以小组为单位先画4个不同类型的三角形,利用手中的工具分别计算三角形三个内角的和各是多少度?
4、指名学生汇报各组度量和计算的结果。你有什么发现?
5、大家算出的三角形的内角和都接近180°,那么,三角形的内角和与180°究竟是怎样的关系呢?就让我们一起来动手实验研究,我们一定能弄清这个问题的。
6、刚才我们计算三角形的内角和都是先测量每个角的度数再相加的。在量每个内角度数时只要有一点误差,内角和就有误差了。我们能不能换一种方法,减少度量的次数呢?
提示学生,可以把三个内角拼成一个角,就只需测量一次了。
7、请拿出桌上的直角三角形纸片,想一想,怎样折可以把三个角拼在一起,试一试。
8、三个角拼在一起组成了一个什么角?我们可以得出什么结论?(直角三角形的内角和是180°)
9、拿一个锐角三角形纸片试试看,折的方法一样。再拿钝角三角形折折看,你发现了什么?(直角三角形和钝角三角形的内角和也是180°)
10、那么,我们能不能说所有三角形的内角和都是180°呢?为什么?(能,因为这三种三角形就包括了所有三角形)11。老师板书结论:三角形的内角和是180°。
12、一个三角形中如果知道了两个内角的度数,你能求出另一个角是多少度吗?怎样求?
13、出示教材85页做一做。让学生试做。
14、指名汇报怎样列式计算的。两种方法均可。
∠2=180°—140°—25°=15°
∠2=180°(140°+25°)=15°
课后反思:
对于三角形的内角和,学生并不陌生,在平时的做题中已经涉及到了。可是学生并不知道如何去验证,所以本节课,重点让孩子们经历体验,感悟图形。从而收获了经验。特别是动手操作将三角形拼成一个直角时,有的孩子将角剪得非常小,很不好拼,在此进行了重点的提示。
三角形内角和教案(篇8)
教学目标:
1、透过操作活动探索发现和验证“三角形的内角和是180度”的规律。
2、在操作活动中,培养学生的合作潜力、动手实践潜力,发展学生的空间观念。并运用新知识解决问题。
3.使学生有科学实验态度,激发学生主动学习数学的兴趣,体验数学学习成功的喜悦。
教学重点:探究发现和验证“三角形的内角和180度”这一规律的过程,并归纳总结出规律。
教学难点:对不同探究方法的指导和学生对规律的灵活应用。
教具学具准备:课件、学生准备不同类型的三角形各一个,量角器。
形状似座山,稳定性能坚。
三竿首尾连,学问不简单。
师:老师这有3个三角形,每个三角形的一部分被长方形给遮住了,你明白这是什么三角形吗?
会是两个直角吗?为什么?
3、引出课题。
师:看来三角形里角必须藏有一些奥秘,这节课我们就来研究有关三角形角的知识“三角形内角和”。(板书课题)
三角形里面的三个角都是三角形的内角。为了方便研究,我们把每个三角形的3个内角分别标上∠1、∠2、∠3。
生:三角形的三个角的度数的和,就是三角形的内角和。
师:是不是所有的三角形的内角和都是180°呢?你能肯定吗?
预设1师:大家意见不统一,我们得想个办法验证三角形的内角和是多少?能够用什么方法验证呢?
选1个自己喜欢的三角形,选喜欢的方法进行验证。
(老师首先为学生带给充分的研究材料,如三种类型的三角形若干个(小组之间的三角形大小都不相同),剪刀,量角器,白纸,直尺等,以及充裕的时间,保证学生能真正地试验,操作和探索,透过量一量、折一折、拼一拼、画一画等方式去探究问题。)
4学生汇报。
(1)教师:汇报的测量结果,有的是180°,有的不是180°,为什么会出现这种状况?
a、学生上台演示。
B、请大家四人小组合作,用他的方法验证其它三角形。
师:我在电脑里收索到折的方法,请同学们看一看他是怎样折的(课件演示)。
(鼓励学生用心开动脑筋,从不同途径探究解决问题的方法,同时给予学生足够的时间和空间,不断让每个学生自己参与,而且注重让学生在经历观察、操作、分析、推理和想像活动过程中解决问题,发展空间观念和论证推理潜力。)
师:除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°到初中我们还要更严密的方法证明三角形的内角和是180°早在300多年前就有一个科学家,他在12岁时就验证了任何三角形的内角和都是180°(课件)帕斯卡(BlaisePascal,1623~1662),法国数学家、物理学家、近代概率论的奠基者。早在300多年前这位法国著名的科学家就已经发现了任何三角形的内角和是180度,而他当时才12岁。
5、巩固知识。
(1)师:你对三角形内角和是多少度还有疑问吗?此刻我们能够肯定的说:三角形的内角和是?度。
(2)解决课前问题,为什么画不出1个内含2个直角的三角形?
1个三角形中有没有2个钝角?
出示2个三角形,生分别说出内角和。
师:接下来,利用三角形的内角和我们来解决一些相关的问题吧!
3、教师:如果一个都不明白,或只明白1个角,你能明白三角形各角的度数吗?
求出下面三角形各角的度数。
(1)我三边相等。
(2)我是等腰三角形,我的顶角是96°。
(3)我有一个锐角是40°。
4、决定。
5、求4边形、5边形内角和。
下课的时间就要到了,我们来一个挑战题。你们敢理解挑战吗?
如果要求10边形的内角和,你会求吗?你有什么发现?
(我的目的不仅仅仅是为了让学生去求解多边形的内角和,更重要的是为了让学生灵活应用知识点,培养学生的空间思维潜力。)
三角形内角和教案(篇9)
《三角形的内角和》教学设计
新兴小学
周林娜
教学内容:义务教育课程标准实验教材小学数学四年级下册第3单元
P28三角形的内角和。
教材分析:三角形的内角和这部分内容是在学生学习了角的度量,角的分类,三角形的认识,三角形的分类的基上进行教学的。它是三角形的一个重要性质,有助于学生理解三角形的三个内角之间的关系,也是进一步学习的基础。教材通过实际操作,引导学生用实验的方法探索规律,概括出一般结论,即任意一个三角形,它的内角和都是180度。接着说明应用这一结论,在一个三角形中,已知两个角的度数,可以求出第三个角的度数。
教学目标:
1、通过数学探究活动使学生发现并验证三角形的内角和等于180度。
2、在应用三角形内角和知识解决问题的过程中促进学生数学思维发展。
3、让学生在亲历探究数学的过程中发展空间想象能力和推理能力。教学重点:让学生探究发现并验证三角形内角和等于180度。教学难点:发展学生的空间观念和推理能力
教学准备:多媒体课件、三角板、量角器、剪刀、各类三角形。
教学过程:
一、故事激趣,创设情境
师:请同学们看到大屏幕!你们知道这个人是谁吗?没错!他是我国的大数学家陈景润叔叔,想不想听听他的故事?
陈景润是我国著名的数学家,他曾经在人们探索数学的道路上作出了一个重要的贡献,就是证明了 “哥德巴赫猜想”,这可是一道世界著名的难题呀!为什么叫它做猜想呢?因为在没有被验证出来之前,它仅仅只是一个猜测。为了验证这个猜测,国内外无数的数学家都做过努力,还动用了大型电子计算机,但两百多年过去了,还是没有人能够证明它。后来,我们中国的数学家陈景润,也用了整整七年的时间来研究这个难题,通过大量的计算和思考,最终把“哥德巴赫猜想”给验证出来了,为推动数学的发展作出了重要的贡献!
师:同学们,你们觉得陈景润叔叔厉害吗?(厉害!)你们想不想像他一样做一个数学家?好,那我们从现在起要认真学好数学,打下牢固的基础。(设计意图:从观看数学家的故事导入,扩大学生的知识面,以激发学生的兴趣,调动学生探索的愿望,同时渗透猜想、验证的数学思想方法)
2、师:这节课让我们也来用猜想、验证的方法探索新知识。同学们有信心吗?(出示:三角形的内角和),请同学们把课题读一遍。
师:看到这个课题,你想提出什么问题?
师:老师把同学们的问题整理了一下,这节课我们就来解决这几个问题:
1、什么是内角?
2、三角形有几个内角?
3、三角形的内角和是多少度?
4、学习三角形的内角和有什么用?
(1)理解“内角”。
师:我们先来看第一个问题:什么是内角?谁想说说自己的想法?(学生说出自己的理解)(三条线段围成三角形后在三角形内形成了三个角,我们把这些角叫作三角形的内角。)
师:一个三角形有几个内角呢?(三个)为了方便,我们将三角形的每个内角编上序号1、2、3,读作∠
1、∠
2、∠3,请同学们给自已手中的三角形每个内角标上角的序号(请两个同学上黑板标)
(2)理解“内角和”。
师:那我们再来想一想三角形的内角和指的是什么呢?(生:就是把三角形的三个内角的度数加起来)对了,∠
1、∠
2、∠3的度数和,就是这个三角形的内角和。(课件演示)
2、师:老师这里有一个直角三角形,你们猜一猜他的三个内角加起来也就是内角和会是多少呢?(180度)
师:180度刚好是一个平角的大小。记得我们曾经算过直角三角板的内角和,它们的内角和的确都是180度,所以你们认为直角三角形的内角和是180度。那么锐角三角形、钝角三角形呢?是不是所有的三角形内角和都是180度呢?
师:这些都是同学们自已的猜想,用什么方法去证明你们的猜想是正确的呢?想不想去验证一下?(设计意图:在这一环节里,教师先让学生大胆猜测,产生认知冲突,激发学习兴趣,诱发探究欲望,为后面作了很好的铺垫。)
二、探究研讨,学习新知
1、师:好!等一下同学们分四人小组来进行验证。看一看老师给每个小组准备了什么材料和工具?[锐角三角形,钝角三角形,直角三角形,正方形,量角器,剪刀(提 示用剪刀要注意安全),表格等]等一下同学们可以选择一些工具和自已喜欢的三角形来进行验证。这里是老师的几点要求:(1)先在组内讨论一下你们打算用什么工具来进行验证,可以怎样进行验证。(2)得出结论后,各小组进行合理分工。(3)选择喜欢的三角形进行验证。(4)记录员要认真在表格里作好记录。比一比看哪个小组的方法多。
2、合作交流,找出结论。(教师巡视,个别指导。)
3、汇报结论,并上台展示发现的方法。
4、教师小结发现方法,用电脑演示。(电脑课件演示:以动画形式将直角三角形、锐角三角形、钝角三角形进行量、剪、拼、折等操作。)
5、师:通过上面的实验,你们得到了什么结论?(三角形的内角和是180度)这个结论是同学们自已验证出来的,请同学们把它大声地读一遍!是不是所有三角形的内角和都是180度呢?
师:回头想一想我们是如何得到这个结论的? 猜想----验证的方法。
(设计意图:给予学生足够的时间和空间,不但让每个学生自主参与猜、量、剪、拼、折等探究三角形内角和特征的实践活动,而且注重让学生在经历猜想、验证、演示、汇报过程中解决问题,发展空间观念和推理能力。)
三、应用新知,解决问题
1、知道了三角形的内角和是180°,有什么用呢?等一下我们就要用到它来解决一些问题!同学们敢不敢挑战?请同学们打开课本28页做试一试。量一量,与算出的结果相同吗?
2、看来同学们对新知识掌握得不错,老师再考一考大家,看谁算得既快又对!(29页想想做做第一题)
3、老师这里还有一个问题呢!在一个三角形中有一个角是直角,猜一猜其它两个锐角可能是多少度?
4、师:同学们真聪明!现在笨笨熊也遇到了一个难题,你们想不想帮它解决?(课件演示):我想画一个三角形,三角形要有2个直角,怎么画也画不出来,你能帮我想想这是为什么吗?
(如果一个三角形里有2个直角,2个直角加起来就等于180度了,再加上第三个角的度数,它就不是一个三角形了,所以画不出这样的三角形。)
师:说得真清楚,我想笨笨熊一定听懂了。老师也有一个问题,能画出一个含有2 个钝角的三角形吗? 生答。
师:也就是说一个三角形里最多只能有一个直角,或者一个钝角。(课件出示)
5、研究一下长方形的内角和是多少度?(课件演示)四边形的内角和是多少度?五边形、六边形的内角和呢?
(设计意图:精心设计不同层次的练习,促进学生的数学思维不断地发展。练习设计由浅入深,由易到难,紧紧围绕三角形的内角和来进行,进一步加深了对三角形内角和的理解和运用。)
四、小结
师:今天这节课你有什么收获?你还想知道些什么?
板书设计
三角形的内角和 猜想---验证
任何三角形的内角和都是180度。
三角形内角和教案(篇10)
《义务教育课程标准实验教科书数学(人教版)》四年级下册第五单元第85页
1、透过“量一量”,“算一算”,“拼一拼”,“折一折”的方法,让学生推理归纳出三角形内角和是180°,并能应用这一知识解决一些简单问题。
2、透过把三角形的内角和转化为平角进行探究实验,渗透“转化”的数学思想.
3、透过数学活动使学生获得成功的体验,增强自信心.培养学生的创新意识,探索精神和实践潜力.
多媒体课件、各类三角形、长方形、正方形、量角器、剪刀、固体胶、活动记录表等。
此刻正是春暖花开,万物复苏的季节。在这完美的日子里,我们相聚在那里,刘老师十分高兴认识大家,你看把蝴蝶也引来了。(课件)
师:请大家仔细观察,它把这条绳子围成了什么三角形?
师:请大家仔细想一想,这三个三角形在围的过程中什么变了?什么没变?
师:这节课我们一齐来研究三角形的内角和。(板书:三角形的内角和)
【评析:以问题情境为出发点,既丰富了学生的感官认识,又激发了学生的学习热情。】
(师手拿一个三角形)这个三角形的内角在哪?谁来指给大家看。一个三角形有几个内角啊?
每人从学具筐中任选一个三角形,指出它的内角。
师:大家明白了什么是三角形的内角,那什么叫“内角和”呢?
(1)师拿一个锐角三角形问:大家猜一猜这个锐角三角形的内角和是多少度?有不同想法吗?
(2)直角三角形与钝角三角形同上。
(3)师:看来大家都认为三角形的内角和是180o,但这仅仅是我们的一种猜测,有了猜测就能够下结论了吗?我们还需要进一步的验证.
刘老师为每个小组准备了一个学具筐,里面有不同的学习材料,或许这些材料会对你有所启发,帮忙你想出好办法。每人此刻都认真的想一想,你打算怎样来验证三角形的内角和不是180o呢?
经过独立思考和动手操作,每人都有了自己的验证方法,先在小组内交流各自的验证方法。
师:来吧孩子们,该到全班交流的时候了.谁愿意先把自己的方法与大家一齐分享。
学生汇报测量结果。
师:刚才大家都认为三角形的内角和是180度,但量的结果有的是180度,有的不是180度,这是怎样原因呢?
师小结:看来采用测量的方法会有误差,学习数学要用这种严谨的态度来对待,咱们再看看别的方法。
请用撕拼方法的学生上台展示撕拼的过程。
师:你是怎样想到把三角形撕下来拼成一个平角来验证的呢?
师评价:你把本不在一齐的三个角,透过移动位置,把它转化成一个平角来验证,还用了转化的思想,你真了不起。
如果学生出现把两个完全相同的直角三角形拼成一个长方形来验证。
师追问:这种方法真的很简单,但它只能证明哪一类的三角形呢?
【评析:《标准》指出:“教师应激发学生的用心性,向学生带给充分从事数学活动的机会,帮忙他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。”在教学设计中刘老师注意体现这一理念,允许学生根据已有的知识经验进行猜测,在猜测后先独立思考验证的方法,再进行小组交流。给学生充分的活动时间和空间,让学生动手操作,使学生在量、剪、拼、折等一系列实验活动中理解和掌握三角形内角和是180°这个图形性质。在探索活动中,使学生学会与他人合作,同时也使学生学到了怎样由已知探索未知的思维方式与方法,培养他们主动探索的精神,让学生在活动中学习,在活动中发展。】
师:不同的方法,同样的精彩,大家发现了吗?无论是撕一撕、折一折、还是拼一拼,这些方法都有异曲同工之妙,那就是你们都用了转化的策略。我发现你们都有数学家的头脑,明白吗?数学家在证明这一猜想时,也用了转化的思想,一齐来看(看课件)
【评析:一方面使学生为自己猜想的结论能被证明而产生满足感;另一方面使学生体会到数学是严谨的,从小就就应让学生养成严谨、认真、实事求是的学习态度。】
师:善于数学发现和思考使帕斯卡走上了成功的道路。这节课才10岁的我们也用自己的智慧发现了帕斯卡12岁时的数学发现,我们同样了不起,刘老师为大家感到骄傲。
【评析:适当的引入课外知识,它既能够激发学生的学习兴趣,又有机的渗透了向帕斯卡学习,做一个善于思考、善于发现的孩子,对学生的情感、态度、价值观的构成与发展能起到了潜移默化的作用。】
明白了这个结论能够帮忙我们解决那些问题呢?
1、把两个小三角形拼成一个大三角形,大三角形的内角和是多少度?为什么?
师:当把两个三角形拼在一齐时,消失了两个内角,正好是180°,所以大三角形的内角和还是180度,如果把三角形分成两个小三角形呢?
【评析:透过课件动态演示两个三角形分与合的过程,让学生进一步理解三角形内角和等于180度这个结论,使学生认识到三角形的内角和不因三角形的大小而改变。】
在一个三角形ABC中,已知A45°,B85o,求с的度数。
在一个直角三角形中,已知с52o,求Α的度数。
爸爸给小红买了一个等腰三角形的风筝。它的一个底角是70°,它的顶角是多少度?
【评析:将三角形内角和知识与三角形特征有机结合起来,使学生综合运用内角和知识和直角三角形、等腰三角形等图形特征求三角形内角的度数。】
3、思考:
你能画出一个有两个直角或两个钝角的三角形吗?为什么?
【评析:将三角形内角和知识与三角形的分类知识结合起来,引导学生运用三角形内角和的知识去解释直角三角形、钝角三角形中角的特征,较好地沟通了知识之间的联系。】
这天我们收获的不仅仅仅是知识上的,还有情感上的,思想方法上的,还认识了一位了不起的科学家帕斯卡,因为他的好奇与不满足让我们记住了他。相信在座的每一位只要你拥有善于发现的眼睛,勤于思考的大脑,勇于实践的双手,将来某一天你也会像他一样伟大。
【评析:这样用谈话的方式进行总结,不仅仅总结了所学知识技能,还体现了学法的指导,增强了情感体验。】
【总评】整节课刘老师透过巧妙的设计,让学生经历了观察、发现、猜测、验证、归纳、概括等数学活动,切实体现了新课程的核心理念“以学生为本,以学生的发展为本”。具体体此刻以下几个方面:
1、精心设计学习活动,让每一个学生经历知识构成的过程。刘老师为学生带给了丰富的结构化的学习材料,有各类的三角形、相同的三角形等,促使学生人人动手、人人思考,引导学生在独立思考的基础上进行合作与交流。在这一过程中发展学生的动手操作潜力、推理归纳潜力,实现学生对知识的主动建构。
2、立足长远,注重长效,不仅仅关注知识和潜力目标的落实,更注重数学思想方法的渗透。在验证三角形内角和是180度的过程中,教师有意识地引导学生认识到撕拼的验证方法其实是把三角形的内角和转化成了平角,使学生对“转化”的数学思想有所感悟;在对测量的结果出现不同答案的交流过程中,使学生认识到测量时会出现误差,从而培养学生严谨的、科学的学习态度和探究精神。
3、遵循教材,不唯教材。本节课上,刘老师延伸了教材,介绍了科学验证三角形内角和的方法以及这一结论的发现者帕斯卡的故事,拓宽了学生的知识面,把学生的学习置于更广阔的数学文化背景中,激起了学生对数学的强烈兴趣,激发了学生用心向上的学习情感。
整节课的学习资料,突出了数学学科的实质,抓住了数学的本质,使学生在动手“做”数学的过程中寻求成功,在成功中享受快乐,在快乐中不断超越,在超越中体验成长.