热门搜索 :
考研考公
您的当前位置:首页正文

商的近似数教案5篇

来源:东饰资讯网

教案的设计能够鼓励教师采用多样化的教学方法,激发学生的创造力,要想提高教学效果,教师们必须认真准备详细的教案,小编今天就为您带来了商的近似数教案5篇,相信一定会对你有所帮助。

商的近似数教案篇1

教学目标:

1、能正确地比较亿以内数的大小。

2、能把整万的数改写成用万作单位的数。

3、能正确的用"四舍五入"法求近似数。

4、培养学生比较、分析的思维能力,养成良好的学习习惯。

教学重点:

熟练掌握亿以内的数位顺序。

教学难点:

位数与数位的区别,省略万位后面的尾数求近似数的方法。

教学过程:

一、复习导入

1、在○里填上">""<"或"="

999○1010 601○564 687○678

(1)第一组两个数你是怎样比较大小的?(第一个数是三位数,第二个数是四位数,三位数一定小于四位数)

(2)第二、第三组数都是三位数,你又是怎样比较的?(两个三位数比较,百位上数大的那个数就大;百位上相同,十位上数大的那个数就大)

我们已经学过比较万以内数的大小,今天我们继续比较学习亿以内数的大小

(板书课题:比较数的大小)

二、学习新课

1、出示例5:比较下面每组中两个数的大小。

(1)99864○101010(课件演示)

提问:两个数各是几位数?

五位数最高位是什么位?六位数呢?

谁大谁小?99864<101010

六位数比五位数大,那么七位数与六位数比较呢?八位数与七位数呢?

如果两个数的位数不同,应该怎样比较大小呢?(位数不同,位数多的那个数大)

如果两个数的位数不同,我们又应该怎样比较大小呢?请大家看下面这道题。

(2)出示第二组数:356000○360000

提问:这两个数都是六位数,先比较哪一位上的数?

十万位上的数字相同,怎么比较?

谁大谁小?356000<360000(十万位上的数字相同,看万位上的数字,第一个数万位上是5,比第二个数万位上的6小)

(3)变式把第一个数356000的万位5改成6现在谁大谁小呢?

(两个数左起第一位十万位和第二位万位上的数字都相同,就要看第三位。第一个数千位是6比第二个数千位上的0大)

所以:366000>360000

(4)启发学生逐步总结完整的比较数的大小的方法。

a:比较数的大小一共有几种情况?位数不同怎样比?位数相同怎样比?

b:数位和位数有什么区别吗?

(5)练习:比较下面每组中两个数的大小。

50140○63140 72605○102800

38456○38546 410200○409300

2、把整万的数改写成用"万"作单位的数

(1)教师出示几个整万的数50000 360000 1800000 120000

观察这些数又什么共同特点?

(2)教师说明:像这些个级全是0的数叫整万的数,写成用万作单位的数比较简便。如50000写成5万即50000=5万1800000=180万

(3)练习:把下面各数改写成以"万"作单位的数

250000=3200000=40450000辆=640000人=

教师强调:改写后原来的单位名称不能丢。40450000辆=4045万辆

640000人=64万人

3、求一个数的近似数

(1)师:我们学过用四舍五入法求一个数的近似数。把下面各数省略千位后面的尾数,求出它们的近似数。

4926≈5000 9375≈9000

省略千位后面的尾数求它的近似数,根据哪一位上的数进行四舍五入?(看百位上的数,然后用"四舍五入"法)

师:比万大的数,也可以用同样的方法来求它的近似数,这就是我们今天要学习的另一个内容。

(板书课题:求近似数)

(2)出示例题6把下面各数万位后面的尾数省略,求出它们的近似数

84380 726310

a、根据省略千位后面的尾数求它的近似数,想一想省略万位后面的尾数怎么求它的近似数。

b、分小组讨论,然后试做。

c、小组汇报结果:

84380≈8万千位是4,舍(不管后面的数字是几)

726310≈73万千位是6,比5大,入

(3)练习:把下面各数万位后面的尾数省略,求出它们的近似数。

63599≈6万709327≈71万637000人≈64万人

(4)教师质疑:把一个整万的数改写成用万作单位的数和省略万位后面的尾数求它的近似数有什么区别和联系?

(讨论交流,引导归纳)

a、相同点:都是计数单位发生变化(从以"一"作单位变成以"万"作单位)

b、不同点:整万数的改写,改写前后数的大小不变,用等号连接;省略万位后面的尾数求近似数(值),数的大小发生了变化,用约等号连接。

三、课堂练习

1、在○里填上">""<"或"=",说说你是怎样比的?

58140○62140 70265○120800

35万人○350000人20万○199999

410200○409300 85万○850001

质疑:①20万199999,因为199999的个位到万位每位上都是9,四舍五入后都要向前一位进"1"而万位上是9,再加上进来的1,是20万,所以这两个数相等,这样想对吗?

学生讨论并归纳①比较大小要用原数比较。②可把20万写成200000后再与199999比较。

师:那么85万850001对吗?

2、按照从小到大的顺序排列下面各数。

40400 400400 44000 50004 9054

说说你们是怎样进行比较的?

3、把下面各数改写成用"万"作单位的数。

80000=()280000=()2800000=()

4050000=()10070000=() 76410000=()

4、写出横线上面的数,然后省略万位后面的尾数求出近似数。

(1)北京西郊大钟寺的一口古钟上有三十万零八十四个字。

(2)一个劳动模范退休后,用十多年的时间为国家栽树三十万七千五百棵。

5、思考题:填空

19□785≈20万20□968≈20万

问:□内可以填入哪些数字?

近似数比实际数大还是小?

四、课堂小结:

今天我们都学习了哪些知识?你对哪个内容最感兴趣?为什么?有什么问题吗?

五、布置作业练习三2、3、4六、

板书设计

商的近似数教案篇2

教学目标:

1.使学生掌握求小数乘法的积的近似数的方法。

2.使学生经历求小数乘法的积的近似数的过程。

3.使学生在解决实际问题中,进一步体会数学与生活的密切联系,培养实践能力的灵活性。

教学重点:

掌握求小数乘法的积的近似数的方法。

教学难点:

根据要求与实际需要取积的近似数。

教学准备:

多媒体课件。

教学过程:

一、基础训练

1.436保留整数、一位小数、两位小数分别是多少?

15.7394精确到个位、十分位、百分位、千分位分别是多少?

一般用什么方法取近似数?怎样用四舍五入法求出这些近似数?

二、导入新课

师:同学们你们知道什么单位的嗅觉最灵敏吗?

生:狗,人们用狗来做侦探,看家。

三、进入新课

师出示教材11页情境图

师:从图上你都看到了什么?

生:描述画面内容。

师:是呀,狗狗使用它灵敏的嗅觉发现坏人的。

投影出示例6

生:读题,理解题意。题中得知生活中和多地方不需要准确值,要近似数。

1.尝试题

师:怎样计算狗的嗅觉约有多少亿个嗅觉细胞呢?(求0.049的45倍是多少。)

2.自学课本

有困难的同学借助课本来学习

3.尝试练习

生:独立完成在练习本上。指名学生板演。

0.049×45≈2.2(亿个)

4.学生讨论

师:充分展示学生出现的情况,组织学生讨论,探究。

强调:横式后面写的是近似数所以要用约等号而不用等号。

明确:保留一位小数,看哪位,根据什么保留?(看百分位,满5舍去后向前一位进一;小于5就直接舍去)保留两位小数呢?

生:看千分位是几,千分位上是5舍去后向前一位进一。

讨论:怎样求积的`近似数?

5.教师讲解

小结:先求积,看保留小数的后一位,用“四舍五入法”取近似数,横式得数要用约等号。

四、巩固练习

1.11页做一做第1题.

求近似数要注意什么?(计算准确,看清题目要求几位小数,积中小数点的位置)

2.11页做一做第2题.

明确为什么保留两位小数?(生活中没有比分更小的钱币)

五、课堂作业

练习三1~3题。

六、小结:谈谈收获。

练习题

1.计算下面各题。

0.8×0.9(得数保留一位小数)

1.7×0.45(得数保留两位小数)

2.一种大米的价格是每千克3.85元,买2.5千克应付多少钱?

练习三

1.按要求保留小数数位

(1)保留一位小数

1.2×1.40.37×8.43.14×3.9

(2)保留两位小数

0.86×1.22.34×0.151.05×0.26

2.一幢大楼有21层,每层高2.84米。这幢大楼约高多少米?(得数保留整数)

3.世界上的一台电子计算机很大,它的质量相当于6头5.85吨重的大象。这台计算机有多重?(得数保留整数)

商的近似数教案篇3

课题四:

商的近似数

教学内容:

教科书第23页的例7和“做一做”中的题目。

教学目的:

1、使学生学会根据实际需要用“四舍五入”来求小数的近似数.

2、提高学生的比较、分析、判断的能力。

教学过程:

一、复习

1.按“四舍五入法”,将下列各数保留一位小数.

3.724.185.256.037.98

2.按“四舍五入”法,将下列各数保留两位小数.

1.4835.3478.7852.864

7.6024.0035.8973.996

做完第1、2题后,要让学生说明其中小数末尾的“0”为什么不能去掉.

二、新课

1.教学例6.

教师出示例6,要求根据书上提出的信息列式计算.当学生除到商为两位小数时,还除不尽.教师问:“实际计算钱数时,通常只算到‘分’,应该保留几位小数?除的时候应该怎么办?(生:应该保留两位小数,只要算出三位小数,然后按“四舍五入法”省略百分位后面的尾数。)

教师问:保留一位小数,应该等于多少?表示计算到“角”。

教师要让学生想一想:“怎样求商的近似值?”(首先要看题目的要求,应该保留几位小数;其次,求商时,要比需要保留的小数位数多除出一位,然后再“四舍五入”.)

2.做第23页“做一做”中的题目.

教师让学生按要求进行计算,巡视时,注意学生计算时取商的近似值的`做法对不对.做完后,让学生说一说按照不同的要求,取不同的商的近似值是怎样求出来的?(计算出商的小数的位数要比要求保留的小数位数多一位,再按“四舍五入法”省略尾数.)

教师问:你解题时用了什么技巧?

三、巩固练习

1、求下面各数的近似数:

3.81÷732÷42246.4÷13

2、书上的作业。

商的近似数教案篇4

教学目标

1.使学生能根据要求正确地运用“四舍五入法”求一个小数的近似数.

2.使学生学会把较大的整数改写成以“万”或“亿”作单位的小数.

教学重点

求一个小数的近似数及把较大的数改写成以“万”或“亿”作单位的小数.

教学难点

使学生能够区别求近似数与改写求准确数的方法.

教学步骤

一、铺垫孕伏.

1.把下面各数省略万后面的尾数,求出它们的近似数.(卡片出示)

986534 58741 31200

50047 398010 14870

2.下面的□里可以填上哪些数字?

32□645≈32万 47□05≈47万

学生填完后,说一说是怎么想的.

二、探究新知.

1.导入新课.

我们学过求一个整数的近似数.在实际应用小数时,往往也没有必要说出它的准确数,只要它的近似数就可以了.如:量得大新的身高是1.625米,平常不需要说得那么精确,只说大约1.6米或1.63米,那么如何求一个小数的近似数呢?今天我们就来学习这一内容.(板书课题:求一个小数的近似数)

2.教学例1:求一个小数的近似数.

(1)教师谈话:求一个小数的近似数,同求整数的近似数相似,根据需要用“四舍五入法”保留一定的小数位数.

(2)出示例1:2.953保留两位小数、一位小数和整数,它的近似数各是多少?

教师提问:保留两位小数,要看哪一位?怎样取近似数?

使学生明确:2.953保留两位小数,就要看千分位,千分位不满5,舍去,求得近似值数2.95.

学生讨论:2.953保留一位小数和整数,要看哪一位?怎样取近似数?

使学生明确:2.953保留一位小数,就要看百分位,百分位满5,向十分位进1,求得近似数3.0. 2.953保留整数就要看十分位,十分位上满5,向前一位进一得到3.

分组讨论:保留一位小数3.0十分位上的“0”能不能去掉?为什么?

教师总结说明:保留整数,表示精确到个位;保留一位小数,表示精确到十分位;保留两位小数,表示精确到百分位……

(3)求下面小数的近似数.

3.781(保留一位小数)

0.0726(精确到百分位)

(4)讨论分析:3.0和3数值相等,它们表示精确的程度怎样?

①教师出示线路图:(投影出示)

②引导学生小组讨论交流:

使学生明确保留一位小数是3.0,原来的长度在2.95与3.05之间.保留整数为3,原来的准确长度在2.5与3.5之间,所以3.0比3精确的程度高一些.也就是小数保留的位数越多,精确的程度越高.

(5)小结.

教师提出问题:求一个小数的近似数应注意什么?

引导学生讨论知道:求一个小数的近似数要注意两点:

①要根据题目的要求取近似值,如果保留些数,就看十分位是几;要保留一位小数,就看百分位是几……然后按“四舍五入法”决定是合还是人.

②取近似值时,在保留的小数位里,小数末一位或几位是0的,0应当保留,不能丢掉.

(6)分组合作学习,填表.

在下表的空格里按照要求填出近似数.

保留整数

保留一位小数

保留两位小数

保留三位小数

3.教学例2:1999年我国生产家用电风扇61581400台.把这个数改写成用“万台”作单位的数.

(1)教师提问:把61581400台改写成用“万台”作单位的数,应该用多少来除?缩小多少倍?小数点应该向哪个方向移动几位?

(根据学生回答教师板书:61581400台=6158.14万台)

教师总结说明:把较大数改写成用“万”作单位的数,只要在万位的右边,点上小数点,在数的后面加写“万”宇.

(2)做一做.

把248000改写成用“万”作单位的数.

4.教学例3:1999年我国生产水泥573000000吨.把这个数改写成用“亿吨”作单位的数.再保留一位小数.

(1)学生讨论:把一个数改写成用“亿吨”作单位的数,应该怎么办?

学生独立改写成573000000吨=5.73亿吨≈5.7亿吨,并说出改写的方法.

教师提问:如果要求保留一位小数怎么办?

启发学生自己得出≈1.4亿吨,并说出保留一位小数的方法.

教师总结说明:把较大数改写成用“亿”作单位的数,只要在亿位的右边,点上小数点,在数的后面加写“亿”字.如果小数位数比较多,可以根据需要保留前几位小数.

(2)“做一做”第2题.

把750000000改写成用“亿”作单位的数.

“做一做”第3题.

把34562800000改写成用“亿”作单位的数后,保留两位小数.

5.区别对比.

例2、例3的学习中,有的数需要把它改写成以“万”或“亿”作单位的数,有的则还需要保留位数求近似数,它们有什么区别?应该注意什么?(引导学生讨论)

三、巩固发展.

1.填空.

求一个小数的近似数,要根据需要用( )法保留小数数位.保留整数,表示精确到( )位;保留一位小数表示精确到( )位;保留两位小数表示精确到( )位……

2.填空.

近似数的.结果一般地说6.0要比6精确.因为6.0表示精确到了( )位,6表示精确到了( )位,所以6.0后面的“0”不能丢掉.

3.下面各小数在哪两个相邻的自然数之间?它们各近似于哪个自然数?

5.28 12.71 4.86 7.05

4.按照四舍五入法写出表中各小数的近似数.

保留整数

保留一位小数

保留两位小数

保留三位小数9.9564

0.9053

1.4639

5.(1)1999年北京市从事工程技术的人员共120100人,改写成用“万人”作单位的数.

(2)1999年我国出版图书7320000000册(张),改写成用“亿册(张)”作单位的数.

四、全课小结.

今天我们学习了怎样求一个小数的近似数,求小数的近似数的方法与求整数的近似数相似.要用“四合五入”法保留小数位数.要注意保留小数位数越多,精确程度越高.

五、布置作业.

1.把下面各小数四舍五入.

(1)精确到十分位:3.47 0.239 4.08

(2)精确到百分位:5.344 6.268 0.402

2.把下面各数改写成用“亿”作单位的数.

(1)保留一位小数:3672800000 648500000

(2)保留两位小数:4853900000 288160000

板书设计

求一个小数的近似数

例1 2.95保留二位小数,一位小数和整数,它的近似数各是多少?

2.953≈2.95

2.953≈3.0

2.953≈3

求一个小数的近似数要注意:

①要根据题目的要求取近似值.

②取近似值时,在保留的小数位里,小数末一位或几位是0的,应当保留,不能去掉.

例 2 61581400台=6158.14万台

在万位右边点上小数点,在数的后面加写万字.

例3 573000000吨=5.73亿吨 .5.7亿吨

在亿位右边点上小数点,在数的后面加写亿字.

数学教案-求一个小数的近似数

商的近似数教案篇5

教学目的:

●使学生能够根据要求会用:“四舍五入”法保留一定的小数位数,求出一个小数的近似数。

●培养学生的类推能力,增进学生对数学的理解和应用数学的信心。

教学重点:能正确的求一个小数的近似数。

教学难点:怎样准确的求一个小数的近似数。

教学过程:

一、导入新课

师:我们已经认识了小数,生活中有许多小数的信息,你收集到了吗?

生:汇报,教师按准确数和近似数把学生提供的信息中的小数分成两种写在黑板上。

师:谁注意到了老师为什么把同学提供的这些小数分成两种写在黑板上呢?(生通过观察回答)

师:在实际生活中有时不必说出小数的准确数,只要说出它的近似数就可以了,同学们看一看自己收集到的信息中有这样的情况吗?(生汇报和小数近似数有关的信息。)

师:听了同学们的汇报,你有什么感受呢?小数的近似数在生活中应用的这么广泛,怎么求一个小数的近似数呢?今天我们就来一起学习。师板书课题。

1、把下面各数省略万后面的尾数,求出它们的近似数(卡片出示)

986534 58741 31200

50047 398010 14870

2、下面的'□里可以填上哪些数字?

32□645≈32万 47□05≈47万

学生填完后,说一说是怎么想的。

[以上复习内容重点抓住了整数取近似值的方法让学生回忆练习,通过复习唤起学生印象,为求小数的近似值打下基础]

二、探究新知

我们学过求一个整数的近似数。在实际应用小数时,往往也没有必要说出它的准确数,只要它的近似数就可以了。如:如豆豆的身高0.984米,平常不需要说得那么精确,那么如何求一个小数的近似数呢?今天我们就来学习这一内容。

师:豆豆的身高0.984米,我们一般怎么表述豆豆的身高?

你是怎样得出豆豆身高的进似数的?

师:你们能利用已有的知识来求出这个小数在不同情况下的近似数吗?

生:自己练习在练习本上做一做,然后在小组内进行交流,看一看有没有争议的地方。并引导学生按顺序进行汇报。

生:

(1)学生汇报保留两位小数求近似数的思维过程,并再找一名同学进行汇报,加深对方法的理解。

(2)保留一位小数,有争议吗?找同学汇报自己的想法。学生讨论近似数是1.0还是1。教师出示线段图,看一看给学生带来什么启示。

引导学生小组讨论交流:使学生明确保留一位小数是1.0,原来的长度在0.95与1.04之间。保留整数为1,原来的准确长度在1.4与1.0之间,所以1.0比1精确的程度高一些。也就是小数保留的位数越多,精确的程度越高。

师:总结出尽管两个数的大小相等,但表示的精确程度不同,同学们认为哪个答案是正确的呢?求近似数时,小数末尾的零不能去掉。

(3)保留整数部分应怎样思考,注意什么问题呢?

师:请同学们回忆求0.984近似数的过程,你能发现求一个小数的近似数有什么共同的特点吗?同学们利用我们以前学过的知识也就是求整数近似数的方法,四舍五入的方法来求小数的近似数,希望同学在今后的学习中也能运用我们学过的知识来解决新的问题。下面我们就用这种方法来求课前同学们提供的这些小数的近似数。(保留到十分位)

(4)小结:

问:求一个小数的近似数应注意什么?

引导学生讨论知道:求一个小数的近似数要注意两点:

①要根据题目的要求取近似值,如果保留整数,就看十分位是几;要保留一位小数,就看百分位是几;……然后按“四舍五入法”决定是舍还是入。

②取近似值时,在保留的小数位里,小数末一位或几位是0的.0应当保留,不能丢掉。

三、练习

(1)师:最后一个信息谁提供的,你能把这个信息用小数近似数的形式)表示出来吗?学生自己修改自己手中的信息,汇报后,再同桌之间交流。

(2)师:老师也收集到了一些小数的信息,这些信息能用小数近似数的形式表述吗?能请你表示出来,不能,请说明理由)

(3)师:同学们还记得自己的身高大约是多少吗?想知道老师的身高吗?教师提示:身高大约是1.6米,老师的实际身高是两位小数,猜一猜老师的实际身高是多少米?老师的身高是用四舍法得到的,再来猜一猜。

(4)出示食物的价格,判断小明带12元钱够吗?学生自由发言,说明自己的理由。

(5)出示租车说明,判断租多少辆车去出游?

师:看来我们不仅要掌握求近似数的方法,还要灵活的运用所学的知识才能解决生活中的实际问题。

四、全课小结:教师明确小数的近似数的方法与整数的近似数相似。要用“四舍五入”法保留小数位数。要注意保留小数位数越多,精确程度越高。

Top